Skip to main content

Generating Random Earthquake Events for Probabilistic Tsunami Hazard Assessment

  • Chapter
  • First Online:
Global Tsunami Science: Past and Future, Volume I

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 920 Accesses

Abstract

To perform probabilistic tsunami hazard assessment for subduction zone earthquakes, it is necessary to start with a catalog of possible future events along with the annual probability of occurrence, or a probability distribution of such events that can be easily sampled. For near-field events, the distribution of slip on the fault can have a significant effect on the resulting tsunami. We present an approach to defining a probability distribution based on subdividing the fault geometry into many subfaults and prescribing a desired covariance matrix relating slip on one subfault to slip on any other subfault. The eigenvalues and eigenvectors of this matrix are then used to define a Karhunen-Loève expansion for random slip patterns. This is similar to a spectral representation of random slip based on Fourier series but conforms to a general fault geometry. We show that only a few terms in this series are needed to represent the features of the slip distribution that are most important in tsunami generation, first with a simple one-dimensional example where slip varies only in the down-dip direction and then on a portion of the Cascadia Subduction Zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, L., LeVeque, R., & González, F. (2015). The pattern-method for incorporating tidal uncertainty into probabilistic tsunami hazard assessment (PTHA). Natural Hazards, 76, 19–39.

    Article  Google Scholar 

  • Anderson, J. G. (2015). The composite source model for broadband simulations of strong ground motions. Seismological Research Letters, 86(1), 68–74. doi:10.1785/0220140098.

    Article  Google Scholar 

  • Bastos, L. S., & O’Hagan, A. (2009). Diagnostics for Gaussian process emulators. Technometrics, 51(4), 425–438. doi:10.1198/TECH.2009.08019.

    Article  Google Scholar 

  • Benner, P., Gugercin, S., & Willcox, K. (2015). A survey of model reduction methods for parametric systems. SIAM Review, 57, 483531.

    Article  Google Scholar 

  • Chock, G.Y.K. (2015). The ASCE 7 tsunami loads and effects design standard. In N. Ingraffea, M. Libby (Eds.), Structures congress 2015 (pp. 1446–1456). American Society of Civil Engineers. doi: 10.1061/9780784479117.124.

  • Cliffe, K. A., Giles, M. B., Scheichl, R., & Teckentrup, A. L. (2011). Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Computing and Visualization in Science, 14(1), 3–15. doi:10.1007/s00791-011-0160-x.

    Article  Google Scholar 

  • Dettmer, J., Hawkins, R., Cummins, P. R., Hossen, J., Sambridge, M., & Hino, R., et al. (2016). Tsunami source uncertainty estimation: The 2011 Japan tsunami. Journal of Geophysical Research: Solid Earth. doi:10.1002/2015JB012764.

    Google Scholar 

  • Dick, J., Kuo, F. Y., & Sloan, I. H. (2013). High-dimensional integration: The quasi-Monte Carlo way. Acta Numerica, 22, 133–288. doi:10.1017/S0962492913000044.

    Article  Google Scholar 

  • Dreger, D. S., Beroza, G. C., Day, S. M., Goulet, C. A., Jordan, T. H., Spudich, P. A., et al. (2015). Validation of the SCEC broadband platform V14.3 Simulation methods using pseudospectral acceleration data. Seismological Research Letters, 86(1), 39–47. doi:10.1785/0220140118.

    Article  Google Scholar 

  • Frankel, A. (1991). High-frequency spectral falloff of earthquakes, fractal dimension of complex rupture, B value, and the scaling of strength on faults. Journal of Geophysical Research, 96, 6291–6302.

    Article  Google Scholar 

  • Geist, E. L. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical Research, 107(B5), 2086. doi:10.1029/2000JB000139.

    Article  Google Scholar 

  • Geist, E. L., & Parsons, T. (2006). Probabilistic analysis of tsunami hazards. Natural Hazards, 37, 277–314.

    Article  Google Scholar 

  • Geist, E. L., Parsons, T., ten Brink, U. S., & Lee, H. J. (2009). In E. N. Bernard, A. R. Robinson (Eds.), The Sea (Vol. 15)., Tsunami probability. Harvard University Press.

    Google Scholar 

  • Ghanem, R. (1999). The Nonlinear Gaussian spectrum of log-normal stochastic processes and variables. Journal of Applied Mechanics, 66(4), 964–973. doi:10.1115/1.2791806.

    Article  Google Scholar 

  • Ghanem, R. G., & Spanos, P. D. (1991). Stochastic finite elements: A spectral approach. New York: Springer.

    Book  Google Scholar 

  • Giles, M. B. (2008). Multilevel Monte Carlo path simulation. Operations Research, 56, 607–617. doi:10.1287/opre.1070.0496.

    Article  Google Scholar 

  • Goda, K., Mai, P. M., Yasuda, T., & Mori, N. (2014). Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth, Planets and Space, 66(1), 1–20. doi:10.1186/1880-5981-66-105.

    Article  Google Scholar 

  • Goda, K., Li, S., Mori, N., & Yasuda, T. (2015). Probabilistic tsunami damage assessment considering stochastic source models: Application to the 2011 Tohoku earthquake. Coastal Engineering Journal, 57(03), 1550,015. doi:10.1142/S0578563415500151.

    Article  Google Scholar 

  • González, F. I., LeVeque, R. J., Adams, L. M., Goldfinger, C., Priest, G. R., & Wang, K. (2014). Probabilistic tsunami hazard assessment (PTHA) for Crescent City, CA.

    Google Scholar 

  • González, F. I., Geist, E. L., Jaffe, B., Knolu, U., Mofjeld, H., Synolakis, C. E., et al. (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources. Journal of Geophysical Research, 114(C11), 023.

    Article  Google Scholar 

  • Graves, R. W., & Pitarka, A. (2010). Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100(5A):2095–2123. doi:10.1785/0120100057. http://www.bssaonline.org/cgi/doi/10.1785/0120100057

    Article  Google Scholar 

  • Guatteri, M., Mai, P. M., Beroza, G. C., & Boatwright, J. (2003). Strong ground-motion prediction from stochastic-dynamic source models. Bulletin of the Seismological Society of America, 93(1), 301–313. doi:10.1785/0120020006.

    Article  Google Scholar 

  • Huang, S. P., Quek, S. T., & Phoon, K. K. (2001). Convergence study of the truncated Karhunen-Loève expansion for simulation of stochastic processes. International Journal for Numerical Methods in Engineering, 52(9), 1029–1043.

    Article  Google Scholar 

  • Jaimes, M. A., Reinoso, E., Ordaz, M., Huerta, B., Silva, R., Mendoza, E., et al. (2016). A new approach to probabilistic earthquake-induced tsunami risk assessment. Ocean and Coastal Management, 119, 68–75. doi:10.1016/j.ocecoaman.2015.10.007.

    Article  Google Scholar 

  • Karhunen, K. (1947). Über lineare Methoden in der Wahrscheinlichkeitsrechnung (vol 37). Universitat Helsinki

    Google Scholar 

  • Lavallée, D., Liu, P., & Archuleta, R. J. (2006). Stochastic model of heterogeneity in earthquake slip spatial distributions. Geophysical Journal International, 165(2), 622–640. doi:10.1111/j.1365-246X.2006.02943.x.

    Article  Google Scholar 

  • LeVeque, R. J., Waagan, K., González, F. I., Rim, D., & Lin, G. (2016). Code to accompany this paper. https://github.com/rjleveque/KLslip-paper. doi:10.5281/zenodo.59720.

  • Li, J., Li, J., & Xiu, D. (2011). An efficient surrogate-based method for computing rare failure probability. Journal of Computational Physics, 230, 8683–8697. doi:10.1016/j.jcp.2011.08.008.

    Article  Google Scholar 

  • Loève, M. (1977). Probability theory (4th ed.). Berlin: Springer-Verlag.

    Google Scholar 

  • Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M. M., & Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: Accuracy and feasibility of inundation maps. Geophysical Journal International, 200(1), 574–588. doi:10.1093/gji/ggu408.

    Article  Google Scholar 

  • Løvholt, F., Pedersen, G., Bazin, S., Kühn, D., Bredesen, R. E., & Harbitz, C. (2012). Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion. Journal of Geophysical Research, 117(C3). doi:10.1029/2011JC007616.

    Article  Google Scholar 

  • Mai, P. M., & Beroza, G.C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research, 107, ESE10–1–ESE10–21

    Article  Google Scholar 

  • Melgar, D. (2016). MudPy software. http://www.github.com/dmelgarm/MudPy

  • Melgar, D., Allen, R. M., Riquelme, S., Geng, J., Bravo, F., Baez, J. C., et al. (2016a). Local tsunami warnings: Perspectives from recent large events. Geophysical Research Letters, 43(3), 2015GL067,100. doi:10.1002/2015GL067100.

    Article  Google Scholar 

  • Melgar, D., LeVeque, R. J., Dreger, D. S, & Allen, R.M. (2016b). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia Subduction Zone. Submitted

    Google Scholar 

  • Nobile, F., Tempone, R., & Webster, C. G. (2008). A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM Journal on Numerical Analysis, 46(5), 2309–2345. doi:10.1137/060663660.

    Article  Google Scholar 

  • Nosov, M. A., Bolshakova, A.V., & Kolesov, S.V. (2014). Displaced water volume, potential energy of initial elevation, and tsunami intensity: Analysis of recent tsunami events. Pure and Applied Geophysics, 171(12), 3515–3525. doi:10.1007/s00024-013-0730-6. http://link.springer.com/10.1007/s00024-013-0730-6

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.

    Google Scholar 

  • Olsson, A., & Sandberg, G. (2002). Latin hypercube sampling for stochastic finite element analysis. Journal of Engineering Mechanics, 128(1), 121–125. doi:10.1061/(ASCE)0733-9399(2002)128:1(121).

    Article  Google Scholar 

  • Peherstorfer, B., Cui, T., Marzouk, Y., & Willcox, K. (2016). Multifidelity importance sampling. Computer Methods in Applied Mechanics and Engineering, 300, 490–509. doi:10.1016/j.cma.2015.12.002.

    Article  Google Scholar 

  • Pollitz, F. F., McCrory, P.A., Wilson, D., Svarc, J., Puskas, C., & Smith, R.B. (2010). Viscoelastic-cycle model of interseismic deformation in the northwestern United States. Geophysical Journal International, 181, 665–696. http://doi.wiley.com/10.1111/j.1365-246X.2010.04546.x

  • Razafindrakoto, H. N. T., Mai, P. M., Genton, M. G., Zhang, L., & Thingbaijam, K. K. S. (2015). Quantifying variability in earthquake rupture models using multidimensional scaling: Application to the 2011 Tohoku earthquake. Geophysical Journal International, 202(1), 17–40. doi:10.1093/gji/ggv088.

    Article  Google Scholar 

  • Sarri, A., Guillas, S., & Dias, F. (2012). Statistical emulation of a tsunami model for sensitivity analysis and uncertainty quantification. Natural Hazards and Earth System Sciences, 12(6), 2003–2018. doi:10.5194/nhess-12-2003-2012.

    Article  Google Scholar 

  • Schwab, C., & Todor, R. A. (2006). Karhunen-Loève approximation of random fields by generalized fast multipole methods. Journal of Computational Physics, 217, 100–122.

    Article  Google Scholar 

  • Stein, S., Geller, R. J., & Liu, M. (2012). Why earthquake hazard maps often fail and what to do about it. Tectonophysics, 562–563, 1–25. doi:10.1016/j.tecto.2012.06.047.

    Article  Google Scholar 

  • USGS. (2010). USGS earthquake archive. http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/finite_fault.php

  • Van Trees, H. L., Bell, K. L., & Tian, Z. (2013). Detection estimation and modulation theory, part I, detection, estimation, and filtering theory (2nd ed.). New Jersey: Wiley.

    Google Scholar 

  • Wang, K., & He, J. (2008). Effects of frictional behavior and geometry of subduction fault on coseismic seafloor deformation. Bulletin of the Seismological Society of America, 98, 571–579. doi:10.1785/0120070097.

    Article  Google Scholar 

  • Witter, R. C., Zhang, Y. J., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L., et al. (2013). Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere, 9(6), 1783–1803. doi:10.1130/GES00899.1.

    Article  Google Scholar 

  • Zhang, L., Mai, P. M., Thingbaijam, K. K., Razafindrakoto, H. N., & Genton, M. G. (2015). Analysing earthquake slip models with the spatial prediction comparison test. Geophysical Journal International, 200(1), 185–198. doi:10.1093/gji/ggu383.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. LeVeque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

LeVeque, R.J., Waagan, K., González, F.I., Rim, D., Lin, G. (2016). Generating Random Earthquake Events for Probabilistic Tsunami Hazard Assessment. In: Geist, E.L., Fritz, H.M., Rabinovich, A.B., Tanioka, Y. (eds) Global Tsunami Science: Past and Future, Volume I. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55480-8_2

Download citation

Publish with us

Policies and ethics