Skip to main content

cAMP Compartmentalisation and Hypertrophy of the Heart: ‘Good’ Pools of cAMP and ‘Bad’ Pools of cAMP Coexist in the Same Cardiac Myocyte

  • Chapter
  • First Online:
Microdomains in the Cardiovascular System

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 3))

Abstract

Pathological growth of cardiomyocytes (hypertrophy) is a major determinant of heart failure, a leading medical cause of mortality worldwide. Initially, cardiac hypertrophy is a compensatory response aimed at increasing cardiac output. However, prolonged cardiac hypertrophy progresses to contractile dysfunction, cardiac decompensation, and finally to heart failure. Although chronic elevation of cardiac cAMP leads to pathologic sequelae, enhancement of particular aspects of cAMP/PKA signalling benefits the failing heart, suggesting that different components of this pathway may have different consequences on cardiac hypertrophy and failure. The finding that cAMP signalling is compartmentalised and that distinct, spatially segregated pools of cAMP mediate different functional effects in the heart may provide a rationale for what appear to be contrasting effects of this pathway on cardiac physiology and pathophysiology. In this chapter, we review some of the evidence in support of compartmentalisation of cAMP/PKA signalling, and we summarise recent findings indicating that distinct pools of cAMP, under the control of different phosphodiesterases, have opposing effects on cardiac myocytes hypertrophic growth. The relevance of these findings for the potential development of innovative approaches to reverse the course of ventricular remodelling is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abi-Gerges A, Richter W, Lefebvre F, Mateo P, Varin A, Heymes C, Samuel JL, Lugnier C, Conti M, Fischmeister R, Vandecasteele G (2009) Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circ Res 105(8):784–792. doi:10.1161/CIRCRESAHA.109.197947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349(6311):694–697

    CAS  PubMed  Google Scholar 

  • Antos CL, Frey N, Marx SO, Reiken S, Gaburjakova M, Richardson JA, Marks AR, Olson EN (2001) Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a. Circ Res 89(11):997–1004

    CAS  PubMed  Google Scholar 

  • Aye TT, Soni S, van Veen TA, van der Heyden MA, Cappadona S, Varro A, de Weger RA, de Jonge N, Vos MA, Heck AJ, Scholten A (2012) Reorganized PKA-AKAP associations in the failing human heart. J Mol Cell Cardiol 52(2):511–518. doi:10.1016/j.yjmcc.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  • Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, Sun Q, Chen L, Heft C, Katus HA, Olson EN (2011) Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol 195(3):403–415. doi:10.1083/jcb.201105063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillie GS, Sood A, McPhee I, Gall I, Perry SJ, Lefkowitz RJ, Houslay MD (2003) Beta-arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci U S A 100(3):940–945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40(10):2023–2039. doi:10.1016/j.biocel.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58(3):488–520

    CAS  PubMed  Google Scholar 

  • Berrera M, Dodoni G, Monterisi S, Pertegato V, Zamparo I, Zaccolo M (2008) A toolkit for real-time detection of cAMP: insights into compartmentalized signaling. Handb Exp Pharmacol 186:285–298. doi:10.1007/978-3-540-72843-6_12

    Article  CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205. doi:10.1038/415198a

    Article  CAS  PubMed  Google Scholar 

  • Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49. doi:10.1146/annurev.physiol.70.113006.100455

    Article  CAS  PubMed  Google Scholar 

  • Bristow MR (2000) Beta-adrenergic receptor blockade in chronic heart failure. Circulation 101(5):558–569

    CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307(4):205–211. doi:10.1056/NEJM198207223070401

    Article  CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S et al (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59(3):297–309

    CAS  PubMed  Google Scholar 

  • Brunton LL, Hayes JS, Mayer SE (1979) Hormonally specific phosphorylation of cardiac troponin I and activation of glycogen phosphorylase. Nature 280(5717):78–80

    CAS  PubMed  Google Scholar 

  • Brunton LL, Hayes JS, Mayer SE (1981) Functional compartmentation of cyclic AMP and protein kinase in heart. Adv Cyclic Nucleotide Res 14:391–397

    CAS  PubMed  Google Scholar 

  • Burgers PP, Ma Y, Margarucci L, Mackey M, van der Heyden MA, Ellisman M, Scholten A, Taylor SS, Heck AJ (2012) A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane. J Biol Chem 287(52):43789–43797. doi:10.1074/jbc.M112.395970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burmeister BT, Wang L, Gold MG, Skidgel RA, O'Bryan JP, Carnegie GK (2015) Protein kinase a (PKA) phosphorylation of Shp2 protein inhibits its phosphatase activity and modulates ligand specificity. J Biol Chem 290(19):12058–12067. doi:10.1074/jbc.M115.642983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxton IL, Brunton LL (1983) Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem 258(17):10233–10239

    CAS  PubMed  Google Scholar 

  • Carlson CR, Lygren B, Berge T, Hoshi N, Wong W, Tasken K, Scott JD (2006) Delineation of type I protein kinase A-selective signaling events using an RI anchoring disruptor. J Biol Chem 281(30):21535–21545. doi:10.1074/jbc.M603223200

    Article  CAS  PubMed  Google Scholar 

  • Carr DW, Hausken ZE, Fraser ID, Stofko-Hahn RE, Scott JD (1992) Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J Biol Chem 267(19):13376–13382

    CAS  PubMed  Google Scholar 

  • Carr DW, Stofko-Hahn RE, Fraser ID, Bishop SM, Acott TS, Brennan RG, Scott JD (1991) Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 266(22):14188–14192

    CAS  PubMed  Google Scholar 

  • Castro LR, Verde I, Cooper DM, Fischmeister R (2006) Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113(18):2221–2228. doi:10.1161/CIRCULATIONAHA.105.599241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS (2007) Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci U S A 104(52):20990–20995. doi:10.1073/pnas.0710527105

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohn JN, Goldstein SO, Greenberg BH, Lorell BH, Bourge RC, Jaski BE, Gottlieb SO, McGrew F 3rd, DeMets DL, White BG (1998) A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. Vesnarinone trial investigators. N Engl J Med 339(25):1810–1816. doi:10.1056/NEJM199812173392503

    Article  CAS  PubMed  Google Scholar 

  • Communal C, Singh K, Sawyer DB, Colucci WS (1999) Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin-sensitive G protein. Circulation 100(22):2210–2212

    CAS  PubMed  Google Scholar 

  • Corbin JD, Keely SL (1977) Characterization and regulation of heart adenosine 3':5'-monophosphate-dependent protein kinase isozymes. J Biol Chem 252(3):910–918

    CAS  PubMed  Google Scholar 

  • Corbin JD, Sugden PH, Lincoln TM, Keely SL (1977) Compartmentalization of adenosine 3′:5′-monophosphate and adenosine 3′:5′-monophosphate-dependent protein kinase in heart tissue. J Biol Chem 252(11):3854–3861

    CAS  PubMed  Google Scholar 

  • Cowley AJ, Skene AM (1994) Treatment of severe heart failure: quantity or quality of life? A trial of enoximone. Enoximone Investigators Br Heart J 72(3):226–230

    CAS  PubMed  Google Scholar 

  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396(6710):474–477

    PubMed  Google Scholar 

  • Dessauer CW (2009) Adenylyl cyclase—A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 76(5):935–941. doi:10.1124/mol.109.059345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Benedetto G, Zoccarato A, Lissandron V, Terrin A, Li X, Houslay MD, Baillie GS, Zaccolo M (2008) Protein kinase a type I and type II define distinct intracellular signaling compartments. Circ Res 103(8):836–844. doi:10.1161/CIRCRESAHA.108.174813

    Article  CAS  PubMed  Google Scholar 

  • DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101(47):16513–16518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domanski MJ, Krause-Steinrauf H, Massie BM, Deedwania P, Follmann D, Kovar D, Murray D, Oren R, Rosenberg Y, Young J, Zile M, Eichhorn E, Investigators B (2003) A comparative analysis of the results from 4 trials of beta-blocker therapy for heart failure: BEST, CIBIS-II, MERIT-HF, and COPERNICUS. J Card Fail 9(5):354–363

    CAS  PubMed  Google Scholar 

  • Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A 96(12):7059–7064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enns LC, Bible KL, Emond MJ, Ladiges WC (2010) Mice lacking the Cbeta subunit of PKA are resistant to angiotensin II-induced cardiac hypertrophy and dysfunction. BMC Res Notes 3:307. doi:10.1186/1756-0500-3-307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farah AE (1983) Glucagon and the circulation. Pharmacol Rev 35(3):181–217

    CAS  PubMed  Google Scholar 

  • Fields LA, Koschinski A, Zaccolo M (2015) Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes. Cell Signal. doi:10.1016/j.cellsig.2015.10.003

    Article  PubMed  Google Scholar 

  • Fink MA, Zakhary DR, Mackey JA, Desnoyer RW, Apperson-Hansen C, Damron DS, Bond M (2001) AKAP-mediated targeting of protein kinase a regulates contractility in cardiac myocytes. Circ Res 88(3):291–297

    CAS  PubMed  Google Scholar 

  • Fowler MB, Laser JA, Hopkins GL, Minobe W, Bristow MR (1986) Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation 74(6):1290–1302

    CAS  PubMed  Google Scholar 

  • Frey N, Richardson JA, Olson EN (2000) Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci U S A 97(26):14632–14637. doi:10.1073/pnas.260501097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao MH, Lai NC, Roth DM, Zhou J, Zhu J, Anzai T, Dalton N, Hammond HK (1999) Adenylyl cyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation 99(12):1618–1622

    CAS  PubMed  Google Scholar 

  • Gesellchen F, Stangherlin A, Surdo N, Terrin A, Zoccarato A, Zaccolo M (2011) Measuring spatiotemporal dynamics of cyclic AMP signaling in real-time using FRET-based biosensors. Methods Mol Biol 746:297–316. doi:10.1007/978-1-61779-126-0_16

    Article  CAS  PubMed  Google Scholar 

  • Gold MG, Lygren B, Dokurno P, Hoshi N, McConnachie G, Tasken K, Carlson CR, Scott JD, Barford D (2006) Molecular basis of AKAP specificity for PKA regulatory subunits. Mol Cell 24(3):383–395. doi:10.1016/j.molcel.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  • Ha CH, Kim JY, Zhao J, Wang W, Jhun BS, Wong C, Jin ZG (2010) PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 107(35):15467–15472. doi:10.1073/pnas.1000462107

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes JS, Bowling N, King KL, Boder GB (1982) Evidence for selective regulation of the phosphorylation of myocyte proteins by isoproterenol and prostaglandin E1. Biochim Biophys Acta 714(1):136–142

    CAS  PubMed  Google Scholar 

  • Hayes JS, Brunton LL (1982) Functional compartments in cyclic nucleotide action. J Cyclic Nucleotide Res 8(1):1–16

    CAS  PubMed  Google Scholar 

  • Hayes JS, Brunton LL, Brown JH, Reese JB, Mayer SE (1979) Hormonally specific expression of cardiac protein kinase activity. Proc Natl Acad Sci U S A 76(4):1570–1574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes JS, Brunton LL, Mayer SE (1980) Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem 255(11):5113–5119

    CAS  PubMed  Google Scholar 

  • Huang LJ, Durick K, Weiner JA, Chun J, Taylor SS (1997) D-AKAP2, a novel protein kinase a anchoring protein with a putative RGS domain. Proc Natl Acad Sci U S A 94(21):11184–11189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwase M, Bishop SP, Uechi M, Vatner DE, Shannon RP, Kudej RK, Wight DC, Wagner TE, Ishikawa Y, Homcy CJ, Vatner SF (1996) Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression. Circ Res 78(4):517–524

    CAS  PubMed  Google Scholar 

  • Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci U S A 93(1):295–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapiloff MS, Piggott LA, Sadana R, Li J, Heredia LA, Henson E, Efendiev R, Dessauer CW (2009) An adenylyl cyclase-mAKAPbeta signaling complex regulates cAMP levels in cardiac myocytes. J Biol Chem 284(35):23540–23546. doi:10.1074/jbc.M109.030072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keely SL (1977) Activation of cAMP-dependent protein kinase without a corresponding increase in phosphorylase activity. Res Commun Chem Pathol Pharmacol 18(2):283–290

    CAS  PubMed  Google Scholar 

  • Kerfant BG, Zhao D, Lorenzen-Schmidt I, Wilson LS, Cai S, Chen SR, Maurice DH, Backx PH (2007) PI3Kgamma is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ Res 101(4):400–408. doi:10.1161/CIRCRESAHA.107.156422

    Article  CAS  PubMed  Google Scholar 

  • Kinderman FS, Kim C, von Daake S, Ma Y, Pham BQ, Spraggon G, Xuong NH, Jennings PA, Taylor SS (2006) A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase. Mol Cell 24(3):397–408. doi:10.1016/j.molcel.2006.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai NC, Roth DM, Gao MH, Fine S, Head BP, Zhu J, McKirnan MD, Kwong C, Dalton N, Urasawa K, Roth DA, Hammond HK (2000) Intracoronary delivery of adenovirus encoding adenylyl cyclase VI increases left ventricular function and cAMP-generating capacity. Circulation 102(19):2396–2401

    CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Rockman HA, Koch WJ (2000) Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation 101(14):1634–1637

    CAS  PubMed  Google Scholar 

  • Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M, Marks AR (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123(1):25–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipskaia L, Defer N, Esposito G, Hajar I, Garel MC, Rockman HA, Hanoune J (2000) Enhanced cardiac function in transgenic mice expressing a Ca(2+)-stimulated adenylyl cyclase. Circ Res 86(7):795–801

    CAS  PubMed  Google Scholar 

  • Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93(10):896–906. doi:10.1161/01.RES.0000102042.83024.CA

    Article  CAS  PubMed  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(3):366–398

    CAS  PubMed  Google Scholar 

  • Lygren B, Carlson CR, Santamaria K, Lissandron V, McSorley T, Litzenberg J, Lorenz D, Wiesner B, Rosenthal W, Zaccolo M, Tasken K, Klussmann E (2007) AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. EMBO Rep 8(11):1061–1067. doi:10.1038/sj.embor.7401081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, van Heeke G, Houslay MD (2005) RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase a/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem 280(39):33178–33189

    CAS  PubMed  Google Scholar 

  • Makarewich CA, Correll RN, Gao H, Zhang H, Yang B, Berretta RM, Rizzo V, Molkentin JD, Houser SR (2012) A caveolae-targeted L-type Ca(2) + channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110(5):669–674. doi:10.1161/CIRCRESAHA.111.264028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markou T, Hadzopoulou-Cladaras M, Lazou A (2004) Phenylephrine induces activation of CREB in adult rat cardiac myocytes through MSK1 and PKA signaling pathways. J Mol Cell Cardiol 37(5):1001–1011. doi:10.1016/j.yjmcc.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  • Martinez SE, Wu AY, Glavas NA, Tang XB, Turley S, Hol WG, Beavo JA (2002) The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc Natl Acad Sci U S A 99(20):13260–13265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martins TJ, Mumby MC, Beavo JA (1982) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 257(4):1973–1979

    CAS  PubMed  Google Scholar 

  • Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13(4):290–314. doi:10.1038/nrd4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell BK, Popovic Z, Mal N, Lee K, Bautista J, Forudi F, Schwartzman R, Jin JP, Penn M, Bond M (2009) Disruption of protein kinase A interaction with A-kinase-anchoring proteins in the heart in vivo: effects on cardiac contractility, protein kinase a phosphorylation, and troponin I proteolysis. J Biol Chem 284(3):1583–1592. doi:10.1074/jbc.M806321200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Means CK, Lygren B, Langeberg LK, Jain A, Dixon RE, Vega AL, Gold MG, Petrosyan S, Taylor SS, Murphy AN, Ha T, Santana LF, Tasken K, Scott JD (2011) An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase a at mitochondria. Proc Natl Acad Sci U S A 108(48):E1227–E1235. doi:10.1073/pnas.1107182108

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehel H, Emons J, Vettel C, Wittkopper K, Seppelt D, Dewenter M, Lutz S, Sossalla S, Maier LS, Lechene P, Leroy J, Lefebvre F, Varin A, Eschenhagen T, Nattel S, Dobrev D, Zimmermann WH, Nikolaev VO, Vandecasteele G, Fischmeister R, El-Armouche A (2013) Phosphodiesterase-2 is up-regulated in human failing hearts and blunts beta-adrenergic responses in cardiomyocytes. J Am Coll Cardiol 62(17):1596–1606. doi:10.1016/j.jacc.2013.05.057

    Article  CAS  PubMed  Google Scholar 

  • Metrich M, Lucas A, Gastineau M, Samuel JL, Heymes C, Morel E, Lezoualc'h F (2008) Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res 102(8):959–965. doi:10.1161/CIRCRESAHA.107.164947

    Article  CAS  PubMed  Google Scholar 

  • Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR, Chien KR, Johnson TD, Bond RA, Lefkowitz RJ (1994) Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science 264(5158):582–586

    CAS  PubMed  Google Scholar 

  • Mokni W, Keravis T, Etienne-Selloum N, Walter A, Kane MO, Schini-Kerth VB, Lugnier C (2010) Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One 5(12):e14227. doi:10.1371/journal.pone.0014227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2):215–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mongillo M, McSorley T, Evellin S, Sood A, Lissandron V, Terrin A, Huston E, Hannawacker A, Lohse MJ, Pozzan T, Houslay MD, Zaccolo M (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95(1):67–75

    CAS  PubMed  Google Scholar 

  • Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD, Zaccolo M (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98(2):226–234

    CAS  PubMed  Google Scholar 

  • Morel E, Marcantoni A, Gastineau M, Birkedal R, Rochais F, Garnier A, Lompre AM, Vandecasteele G, Lezoualc'h F (2005) cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res 97(12):1296–1304. doi:10.1161/01.RES.0000194325.31359.86

    Article  CAS  PubMed  Google Scholar 

  • Movsesian MA (2004) Altered cAMP-mediated signalling and its role in the pathogenesis of dilated cardiomyopathy. Cardiovasc Res 62(3):450–459. doi:10.1016/j.cardiores.2004.01.035

    Article  CAS  PubMed  Google Scholar 

  • Movsesian MA, Smith CJ, Krall J, Bristow MR, Manganiello VC (1991) Sarcoplasmic reticulum-associated cyclic adenosine 5'-monophosphate phosphodiesterase activity in normal and failing human hearts. J Clin Invest 88(1):15–19. doi:10.1172/JCI115272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller FU, Boknik P, Knapp J, Linck B, Luss H, Neumann J, Schmitz W (2001) Activation and inactivation of cAMP-response element-mediated gene transcription in cardiac myocytes. Cardiovasc Res 52(1):95–102

    CAS  PubMed  Google Scholar 

  • Nagayama T, Hsu S, Zhang M, Koitabashi N, Bedja D, Gabrielson KL, Takimoto E, Kass DA (2009) Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J Am Coll Cardiol 53(2):207–215. doi:10.1016/j.jacc.2008.08.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano SJ, Sucharov J, Van R, Cecil M, Nunley K, Wickers S, Karimpur-Fard A, Stauffer BL, Miyamoto SD, Sucharov CC (2016) Cardiac adenylyl cyclase and phosphodiesterase expression profiles vary by age, disease, and chronic phosphodiesterase inhibitor treatment. J Card Fail. doi:10.1016/j.cardfail.2016.07.429

    Article  PubMed  PubMed Central  Google Scholar 

  • Nichols CB, Rossow CF, Navedo MF, Westenbroek RE, Catterall WA, Santana LF, McKnight GS (2010) Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res 107(6):747–756. doi:10.1161/CIRCRESAHA.109.216127

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279(36):37215–37218

    CAS  PubMed  Google Scholar 

  • Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99(10):1084–1091. doi:10.1161/01.RES.0000250046.69918.d5

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev VO, Lohse MJ (2006) Monitoring of cAMP synthesis and degradation in living cells. Physiology 21:86–92. doi:10.1152/physiol.00057.2005

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J (2010) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327(5973):1653–1657. doi:10.1126/science.1185988

    Article  CAS  PubMed  Google Scholar 

  • Okumura S, Takagi G, Kawabe J, Yang G, Lee MC, Hong C, Liu J, Vatner DE, Sadoshima J, Vatner SF, Ishikawa Y (2003) Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc Natl Acad Sci U S A 100(17):9986–9990. doi:10.1073/pnas.1733772100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrom RS, Gregorian C, Drenan RM, Xiang Y, Regan JW, Insel PA (2001) Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 276(45):42063–42069. doi:10.1074/jbc.M105348200

    Article  CAS  PubMed  Google Scholar 

  • Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, Hendrix GH, Bommer WJ, Elkayam U, Kukin ML et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE study research group. N Engl J Med 325(21):1468–1475. doi:10.1056/NEJM199111213252103

    Article  CAS  PubMed  Google Scholar 

  • Patel HH, Murray F, Insel PA (2008) G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol 186:167–184. doi:10.1007/978-3-540-72843-6_7

    Article  CAS  Google Scholar 

  • Pidoux G, Witczak O, Jarnaess E, Myrvold L, Urlaub H, Stokka AJ, Kuntziger T, Tasken K (2011) Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J 30(21):4371–4386. doi:10.1038/emboj.2011.365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5(12):1176–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, LeWinter MM, Rouleau JL, Bull DA, Mann DL, Deswal A, Stevenson LW, Givertz MM, Ofili EO, O'Connor CM, Felker GM, Goldsmith SR, Bart BA, McNulty SE, Ibarra JC, Lin G, Oh JK, Patel MR, Kim RJ, Tracy RP, Velazquez EJ, Anstrom KJ, Hernandez AF, Mascette AM, Braunwald E, Trial R (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309(12):1268–1277. doi:10.1001/jama.2013.2024

    Article  CAS  PubMed  Google Scholar 

  • Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116(2):147–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rich TC, Tse TE, Rohan JG, Schaack J, Karpen JW (2001) In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol 118(1):63–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rochais F, Abi-Gerges A, Horner K, Lefebvre F, Cooper DM, Conti M, Fischmeister R, Vandecasteele G (2006) A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ Res 98(8):1081–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rochais F, Vandecasteele G, Lefebvre F, Lugnier C, Lum H, Mazet JL, Cooper DM, Fischmeister R (2004) Negative feedback exerted by cAMP-dependent protein kinase and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes: an in vivo study using adenovirus-mediated expression of CNG channels. J Biol Chem 279(50):52095–52105

    CAS  PubMed  Google Scholar 

  • Roth DM, Bayat H, Drumm JD, Gao MH, Swaney JS, Ander A, Hammond HK (2002) Adenylyl cyclase increases survival in cardiomyopathy. Circulation 105(16):1989–1994

    CAS  PubMed  Google Scholar 

  • Roth DM, Gao MH, Lai NC, Drumm J, Dalton N, Zhou JY, Zhu J, Entrikin D, Hammond HK (1999) Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 99(24):3099–3102

    CAS  PubMed  Google Scholar 

  • Ruppelt A, Mosenden R, Gronholm M, Aandahl EM, Tobin D, Carlson CR, Abrahamsen H, Herberg FW, Carpen O, Tasken K (2007) Inhibition of T cell activation by cyclic adenosine 5'-monophosphate requires lipid raft targeting of protein kinase a type I by the A-kinase anchoring protein ezrin. J Immunol 179(8):5159–5168

    CAS  PubMed  Google Scholar 

  • Rybin VO, Xu X, Lisanti MP, Steinberg SF (2000) Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275(52):41447–41457. doi:10.1074/jbc.M006951200

    Article  CAS  PubMed  Google Scholar 

  • Sadoshima J, Izumo S (1997) The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551–571. doi:10.1146/annurev.physiol.59.1.551

    Article  CAS  PubMed  Google Scholar 

  • Salloum F, Yin C, Xi L, Kukreja RC (2003) Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 92(6):595–597. doi:10.1161/01.RES.0000066853.09821.98

    Article  CAS  PubMed  Google Scholar 

  • Saucerman JJ, Zhang J, Martin JC, Peng LX, Stenbit AE, Tsien RY, McCulloch AD (2006) Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci U S A 103(34):12923–12928. doi:10.1073/pnas.0600137103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 271(28):16526–16534

    CAS  PubMed  Google Scholar 

  • Sheridan CM, Heist EK, Beals CR, Crabtree GR, Gardner P (2002) Protein kinase a negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J Biol Chem 277(50):48664–48676

    CAS  PubMed  Google Scholar 

  • Sin YY, Edwards HV, Li X, Day JP, Christian F, Dunlop AJ, Adams DR, Zaccolo M, Houslay MD, Baillie GS (2011) Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the beta-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol 50(5):872–883. doi:10.1016/j.yjmcc.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  • Skroblin P, Grossmann S, Schafer G, Rosenthal W, Klussmann E (2010) Mechanisms of protein kinase a anchoring. Int Rev Cell Mol Biol 283:235–330. doi:10.1016/S1937-6448(10)83005-9

    Article  CAS  PubMed  Google Scholar 

  • Soni S, Scholten A, Vos MA, van Veen TA (2014) Anchored protein kinase a signalling in cardiac cellular electrophysiology. J Cell Mol Med 18(11):2135–2146. doi:10.1111/jcmm.12365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenger JU, Perera RK, Steinbrecher JH, Lehnart SE, Maier LS, Hasenfuss G, Nikolaev VO (2015) In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat Commun 6:6965. doi:10.1038/ncomms7965

    Article  CAS  PubMed  Google Scholar 

  • Stangherlin A, Gesellchen F, Zoccarato A, Terrin A, Fields LA, Berrera M, Surdo NC, Craig MA, Smith G, Hamilton G, Zaccolo M (2011) cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes. Circ Res 108(8):929–939. doi:10.1161/CIRCRESAHA.110.230698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stangherlin A, Koschinski A, Terrin A, Zoccarato A, Jiang H, Fields LA, Zaccolo M (2014) Analysis of compartmentalized cAMP: a method to compare signals from differently targeted FRET reporters. Methods Mol Biol 1071:59–71. doi:10.1007/978-1-62703-622-1_5

    Article  CAS  PubMed  Google Scholar 

  • Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773. doi:10.1146/annurev.pharmtox.41.1.751

    Article  CAS  PubMed  Google Scholar 

  • Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11(2):214–222

    CAS  PubMed  Google Scholar 

  • Terrin A, Monterisi S, Stangherlin A, Zoccarato A, Koschinski A, Surdo NC, Mongillo M, Sawa A, Jordanides NE, Mountford JC, Zaccolo M (2012) PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome. J Cell Biol 198(4):607–621. doi:10.1083/jcb.201201059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timofeyev V, Myers RE, Kim HJ, Woltz RL, Sirish P, Heiserman JP, Li N, Singapuri A, Tang T, Yarov-Yarovoy V, Yamoah EN, Hammond HK, Chiamvimonvat N (2013) Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res 112(12):1567–1576. doi:10.1161/CIRCRESAHA.112.300370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uretsky BF, Jessup M, Konstam MA, Dec GW, Leier CV, Benotti J, Murali S, Herrmann HC, Sandberg JA (1990) Multicenter trial of oral enoximone in patients with moderate to moderately severe congestive heart failure. Lack of benefit compared with placebo. Enoximone Multicenter Trial Group Circulation 82(3):774–780

    CAS  PubMed  Google Scholar 

  • van Heerebeek L, Hamdani N, Falcao-Pires I, Leite-Moreira AF, Begieneman MP, Bronzwaer JG, van der Velden J, Stienen GJ, Laarman GJ, Somsen A, Verheugt FW, Niessen HW, Paulus WJ (2012) Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 126(7):830–839. doi:10.1161/CIRCULATIONAHA.111.076075

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Pahlke G, Salanova M, Zhang G, Wang S, Coletti D, Onuffer J, Jin SL, Conti M (2001) Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem 276(14):11189–11198

    CAS  PubMed  Google Scholar 

  • Vettel C, Lindner M, Dewenter M, Lorenz K, Schanbacher C, Riedel M, Lämmle S, Meinecke S, Mason FE, Sossalla S, Geerts A, Hoffmann M, Wunder F, Brunner FJ, Wieland T, Mehel H, Karam S, Lechêne P, Leroy J, Vandecasteele G, Wagner M, Fischmeister R, El-Armouche A (2016) Phosphodiesterase 2 Protects Against Catecholamine-Induced Arrhythmia and Preserves Contractile Function After Myocardial Infarction. Circ Res. CIRCRESAHA.116.310069. [Epub ahead of print]

    Google Scholar 

  • Vila Petroff MG, Egan JM, Wang X, Sollott SJ (2001) Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res 89(5):445–452

    CAS  PubMed  Google Scholar 

  • Wagner M, Mehel H, Fischmeister R, El-Armouche A (2016) Phosphodiesterase 2: anti-adrenergic friend or hypertrophic foe in heart disease? Naunyn Schmiedeberg's Arch Pharmacol 389(11):1139–1141

    CAS  Google Scholar 

  • Warrier S, Belevych AE, Ruse M, Eckert RL, Zaccolo M, Pozzan T, Harvey RD (2005) Beta-adrenergic- and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes detected with FRET-based biosensor. Am J Physiol Cell Physiol 289(2):C455–C461

    CAS  PubMed  Google Scholar 

  • Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87(3):965–1010. doi:10.1152/physrev.00049.2006

    Article  CAS  PubMed  Google Scholar 

  • Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5(12):959–970

    CAS  PubMed  Google Scholar 

  • Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A 107(15):7000–7005. doi:10.1073/pnas.1001825107

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Rybin VO, Steinberg SF, Kobilka B (2002) Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem 277(37):34280–34286. doi:10.1074/jbc.M201644200

    Article  CAS  PubMed  Google Scholar 

  • Xiao RP, Hohl C, Altschuld R, Jones L, Livingston B, Ziman B, Tantini B, Lakatta EG (1994) Beta 2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem 269(29):19151–19156

    CAS  PubMed  Google Scholar 

  • Xiao RP, Lakatta EG (1993) Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 73(2):286–300

    CAS  PubMed  Google Scholar 

  • Yanaka N, Kurosawa Y, Minami K, Kawai E, Omori K (2003) cGMP-phosphodiesterase activity is up-regulated in response to pressure overload of rat ventricles. Biosci Biotechnol Biochem. 67(5):973–979

    CAS  PubMed  Google Scholar 

  • Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2(1):25–29

    CAS  PubMed  Google Scholar 

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295(5560):1711–1715

    CAS  PubMed  Google Scholar 

  • Zakhary DR, Moravec CS, Stewart RW, Bond M (1999) Protein kinase a (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy. Circulation 99(4):505–510

    CAS  PubMed  Google Scholar 

  • Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A 98(4):1607–1612. doi:10.1073/pnas.98.4.1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoccarato A, Surdo NC, Aronsen JM, Fields LA, Mancuso L, Dodoni G, Stangherlin A, Livie C, Jiang H, Sin YY, Gesellchen F, Terrin A, Baillie GS, Nicklin SA, Graham D, Szabo-Fresnais N, Krall J, Vandeput F, Movsesian M, Furlan L, Corsetti V, Hamilton G, Lefkimmiatis K, Sjaastad I, Zaccolo M (2015) Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2. Circ Res 117(8):707–719. doi:10.1161/CIRCRESAHA.114.305892

    Article  CAS  PubMed  Google Scholar 

  • Zoccarato A, Fields LH, Zaccolo M (2016) Response to Wagner et al.: phosphodiesterase-2-anti-adrenergic friend or hypertrophic foe in heart disease? Naunyn Schmiedeberg’s Arch Pharmacol 389(11):1143–1145

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the British Heart Foundation (PG/10/75/28537 and RG/12/3/29423) and the BHF Centre of Research Excellence, Oxford (RE/08/004) to M. Z.

Compliance with Ethical Standards

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Zaccolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zoccarato, A., Zaccolo, M. (2017). cAMP Compartmentalisation and Hypertrophy of the Heart: ‘Good’ Pools of cAMP and ‘Bad’ Pools of cAMP Coexist in the Same Cardiac Myocyte. In: Nikolaev, V., Zaccolo, M. (eds) Microdomains in the Cardiovascular System. Cardiac and Vascular Biology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-54579-0_7

Download citation

Publish with us

Policies and ethics