Skip to main content

Deep-Sea Mining: Current Status and Future Considerations

  • Chapter
  • First Online:
Deep-Sea Mining

Abstract

Deep-sea minerals such as polymetallic nodule, hydrothermal sulphides, and ferro-manganese crusts have for long attracted attention as an alternative source of metals to terrestrial deposits. The occurrence of many of these deposits in the international waters has necessitated its regulation under the UN Convention on the Law of the Sea through the establishment of International Seabed Authority.

A sudden spurt in the number of ‘Contractors’ interested in claiming large tracts of seafloor with exclusive rights for exploration from just eight in the first four decades (1970–2010) to 25 in the next 4 years (2011–2015) as well as consistent research and development of technology for prospecting, mining, and processing of these resources, coupled with issuing of licences to private entrepreneurs for deposits within the EEZ of some countries, calls for a re-look at the current status and future prospects of deep-sea mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amann H (1982) Technological trends in ocean mining. Philos Trans R Soc:377–403

    Article  Google Scholar 

  • Amos AF, Roels OA, Garside C, Malone TC, Paul AZ (1977) Environmental aspects of nodule mining. In: Glasby GP (ed) Marine manganese deposits. Elsevier, Oxford, pp 391–438

    Chapter  Google Scholar 

  • Banakar VK, Hein JR, Rajani RP, Chodankar AR (2007) Platinum group elements and gold in ferromanganese crusts from Afanasiy-Nikitin seamount, equatorial Indian Ocean: sources and fractionation. J Earth Sys Sc 116:3–13

    Article  Google Scholar 

  • Chung JS (2003) Deep-ocean mining technology: learning curve I. In: Proceedings of ISOPE-ocean mining symposium, International Society for Offshore and Polar Engineers, Tsukuba, Japan, pp 1–16

    Google Scholar 

  • Chung JS, Schriever G, Sharma R, Yamazaki T (2001) Deep seabed mining environment: engineering and environment assessment. In: Proceedings of ISOPE–ocean mining symposium, International Society for Offshore and Polar Engineers, Szcecin, Poland, pp 8–14

    Google Scholar 

  • Cronan DS (1980) Underwater minerals. Academic Press, London, p 362

    Google Scholar 

  • Cronan DS (ed) (2000) Marine mineral deposits handbook. CRC Press, Boca Raton, p 406

    Google Scholar 

  • Cronan DS, Moorby SA (1981) Manganese nodules and other ferromanganese oxide deposits from the Indian Ocean. J Geol Soc Lond 138:527–539

    Article  Google Scholar 

  • Dick R (1985) Deep-sea mning versus land mining: a cost comparison. In: Donges JB (ed) The economics of deep-sea mining. Springer-Verlag, Berlin, Germany, pp 2–60

    Chapter  Google Scholar 

  • Exon NF, Raven MD, De Carlo EH (2002) Ferromanganese nodules and crusts from the Christmas region, Indian Ocean. Mar Georesour Geotechnol 20:275–297

    Article  Google Scholar 

  • en.wikipedi.org/wiki/HMSChallenger. Information on HMS Challenger expedition 1873–1876.

    Google Scholar 

  • Frazer JZ, Fisk MB (1981) Geological factors related to characteristics of seafloor manganese nodule deposits. Deep-Sea Res 28A:1533–1551

    Article  Google Scholar 

  • Frazer JZ, Wilson LL (1980) Nodule resources in the Indian Ocean. Mar Min 2:257–256

    Google Scholar 

  • Foell EJ, Thiel H, Schriever G (1990) DISCOL: a long-term, large-scale, disturbance-recolonization experiment in the abyssal eastern tropical South Pacific Ocean. In: Proceedings of offshore technology conference, International Society for Offshore and Polar Engineers, Houston, pp 497–503

    Google Scholar 

  • Ford G, Niblett C, Walker L (1987) The future for ocean technology. Frances, London, 139 pp

    Google Scholar 

  • Fukushima T (1995) Overview Japan Deep-Sea impact experiment=JET. In: Proceedings of ISOPE ocean mining symposium. International Society for Offshore and Polar Engineers, Tsukuba, Japan, pp 47–53

    Google Scholar 

  • Glasby GP (1972) Geochemistry of manganese nodules from the Northwest Indian Ocean. In: Horn DR (ed) Ferromanganese deposits on the ocean floor. National Science Foundation, Washington, pp 93–104

    Google Scholar 

  • Glasby GP (ed) (1977) Marine manganese deposits. Elsevier, Amsterdam, p 523

    Google Scholar 

  • Glasby GP (1982) Manganese nodules from the South Pacific: an evaluation. Mar Min 3:231–270

    Google Scholar 

  • Glasby GP, Stoffers P, Sioulas A, Thijssen T, Friedrich G (1982) Manganese nodules formation in the Pacific Ocean: a general theory. Geo-Mar Lett 2:47–53

    Article  Google Scholar 

  • Glasby GP (1983) The three-million-tons-per-year manganese nodule “Mine Site”: an optimistic assumption? Mar Min 4:73–77

    Google Scholar 

  • Gleason WM (2008) Companies turning to seafloor in advance of next great metals rush. Min Engg April 2008:14–16

    Google Scholar 

  • Glumov IF, Kuzneicov KM, Prokazova MS (2000) Ocenka znaczzenija mineralych resursov meidunarod nogo rajona morskogo dna w mineralno syriewom potenciale Rossijskoj Federacii (in Russian). In: Proceedings of geological congress, St. Petersburg, pp 27–29

    Google Scholar 

  • Halbach P, Sattler CD, Teichmann F, Wahsner M (1989) Cobalt rich and platinum bearing manganese crust deposits on seamounts: nature, formation and metal potential. Mar Min 8:23

    Google Scholar 

  • Halkyard J (2008) Paper presented in Workshop on polymetallic nodule mining technology: current status and challenges ahead, Chennai, India (Sept. 2008). International Seabed Authority, Jamaica

    Google Scholar 

  • Hein JR, Yeh H-W, Alexander E (1979) Origin of iron-rich montmorillonite from the manganese nodule belt of the north equatorial Pacific. Clay Clay Miner 27:185–194

    Article  Google Scholar 

  • Hein JR, Kochinsky A, Halbach P, Manheim FT, Bau M, Kang J-K, Lubick N (1997) Iron and manganese oxide mineralisation in the Pacific. In: Nicholon K, Hein JR, Buhn B, Dasgupta S (eds) Manganese mineralisation: geochemistry and mineralogy of terrestrial and marine deposits. Geological Society Special Publication No. 119, London, p 123

    Article  Google Scholar 

  • Hill T (2008) Paper presented in workshop on polymetallic nodule mining technology: current status and challenges ahead, Chennai, India, Sept 2008. International Seabed Authority, Jamaica

    Google Scholar 

  • Herrouin G, Lenoble JP, Charles C, Mauviel F, Bernard J, Taine B (1991) French study indicates profit potential for industrial manganese nodule venture. Trans Soc Min Metall Explor 288:1893–1899

    Google Scholar 

  • International Marine Minerals Society (2011) Code for environmental management of marine mining. www.immsoc.org/IMMS_code.htm

  • International Seabed Authority (2016) Areas allotted to Contractors and Reserved areas in the Pacific Ocean, Atlantic Ocean and Indian Ocean. www.isa.org.jm

  • ISA (1998) Plans of work of exploration of Govt. of India, Inst. Francais de Researche pour L’exploration de la mer, Deep Ocean Resources Development Co. Japan, Yuzhmorgeologiya Russia, China Ocean Mineral Resources R & D Association, Interoceanmetal Joint Organisation, and Govt. of Republic of Korea. Report of the Secretary General, International Seabed Authority, Jamaica. ISBA/4/A/1/Rev.2

    Google Scholar 

  • ISA (2000) Decision of the assembly relating to the regulations on prospecting and exploration for polymetallic nodules in the Area. ISBA/6/A/18, International Seabed Authority, Jamaica, p 48

    Google Scholar 

  • ISA (2001) Recommendations for guidance of contractors for the assessment of the possible environmental impacts arising from exploration for polymetallic nodules in the Area. International Seabed Authority, Jamaica. ISBA/7/LTC/1 2001; pp 11.

    Google Scholar 

  • ISA (2005) Recommendations of the workshop on polymetallic sulphides and cobalt crusts: their environment and considerations for the establishment of environmental baselines and an associated monitoring programme for exploration. ISBA/11/LTC/2 2005, International Seabed Authority, Jamaica, p 26

    Google Scholar 

  • ISA (2008a) Report on the International Seabed Authority’s workshop on Polymetallic nodule mining technology: current status and challenges ahead. ISBA/14/LTC/3, International Seabed Authority, Jamaica, p 4

    Google Scholar 

  • ISA (2008b) Executive summary of the International Seabed Authority’s workshop on Polymetallic nodule mining technology: current status and challenges ahead. International Seabed Authority: Chennai, India, p 20

    Google Scholar 

  • ISA (2009) A geological model for polymetallic nodules in Clarion-Clipperton Fracture Zone. Technical Report No. 6, International Seabed Authority, Jamaica, p 211

    Google Scholar 

  • Jasiobedzki P, Corcoran R, Jenkin M, Jakola R (2007) From space robotics to deep seabed mining. In: Proceedings of 37th Underwater Mining Institute. International Marine Minerals Society, Tokyo, Japan, pp J1–11

    Google Scholar 

  • Jauhari PJ, Pattan JN (2000) Ferromanganese nodules from the Central Indian Ocean Basin. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press, Boca Raton, pp 171–195

    Google Scholar 

  • Kotlinski R (2001) Mineral resources of the world’s ocean—their importance for global economy in the 21st century. In: Proceedings of 4th ISOPE ocean mining symposium, International Society for Offshore and Polar Engineers, Szczecin, Poland, pp 1–7

    Google Scholar 

  • Kunzendorf H (1986) Marine mineral exploration. Elsevier Science Publications, Amsterdam, 300 p

    Google Scholar 

  • Lenoble JP (2000) A comparison of possible economic returns from mining deep-sea polymetallic nodules, polymetallic massive sulphides and cobalt-rich ferromanganese crusts. In: Proceedings of workshop on mineral resources. International Seabed Authority, Jamaica, pp 1–22

    Google Scholar 

  • Markussen JM (1994) Deep seabed mining and the environment: consequences, perception and regulations. In: Bergesen H, Parmann G (eds) Green Globe Yearbook of international cooperation on environment and development. Oxford University Press, London, pp 31–39

    Google Scholar 

  • Martin-Barajas A, Lallier-Verges E, Lecraire L (1991) Characteristics of manganese nodules from the Central Indian Basin: relationship with sedimentary environment. Mar Geol 101:249–265

    Article  Google Scholar 

  • Metals prices for Cu, Ni, Co, Mn for 5 years (July 2011). www.metalprices.com

  • Mero JL (1965) The mineral resources of the sea. Elsevier, Amsterdam, The Netherlands, 312 pp

    Google Scholar 

  • Mero JL (1977) Economic aspects of nodule mining. In: Glasby GP (ed) Marine manganese deposits. Elsevier, Amsterdam, The Netherlands, pp 327–355

    Chapter  Google Scholar 

  • Morgan C (2000) Resource estimation of the Clarion-clipperton manganese nodule deposits. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press, Boca Raton, pp 145–170

    Google Scholar 

  • Morgan CL, Odunton N, Jones AT (1999) Synthesis of environmental impacts of deep seabed mining. Mar Georesour Geotechnol 17:307–357

    Article  Google Scholar 

  • Ozturgut E, Lavelle JW, Steffin O, Swift SA (1980) Environmental investigation during manganese nodule mining tests in the north equatorial pacific, in November 1978. NOAA Tech. Memorandum ERL MESA-48, National Oceanic and Atmospheric Administration, p 50

    Google Scholar 

  • Pearson JS (1975) Ocean floor mining. Noyes Data Corporation, Park Ridge, NJ, 201 pp

    Google Scholar 

  • Rao VP, Nath BN (1988) Nature, distribution and origin of clay minerals in grain size fractions of sediments from manganese nodule field, Central Indian Ocean Basin. Ind J Mar Sci 17:202–207

    Google Scholar 

  • Plueger WL, Herzig PM, Becker K-P, Deissmann G, Schops D, Lange J, Jenisch A, Ladage S, Richnow HH, Schultz T, Michaelis W (1990) Dicovery of the hydrothermal fields at the Central Indian Ridge. Mar Min 9:73

    Google Scholar 

  • Rona PA (1988) Hydrothermal mineralisation at oceanic ridges. Can Mineral 26:431

    Google Scholar 

  • Rona PA (2003) Resources of the ocean floor. Science 299:673–674

    Article  Google Scholar 

  • Sharma R (2011) Deep-sea mining: economic, technical, technological and environmental considerations for sustainable mining. Mar Technol Soc J 45:28–41

    Article  Google Scholar 

  • Sharma R, Nath BN (eds) (2000) Indian BIE: Indian Deep-sea Environment Experiment (INDEX). Mar Georesour Geotechnol 18:177–294

    Google Scholar 

  • Sharma R (ed) (2001) Indian deep-sea environment experiment (INDEX): a study for environmental impact of deep seabed mining in Central Indian Ocean. Deep-Sea Res II 48:3295–3426

    Google Scholar 

  • Sharma R (ed) (2005) Indian deep-sea environment experiment (INDEX): monitoring the restoration of marine environment after artificial disturbance to simulate deep-sea mining in Central Indian Basin. Mar Georesour Geotechnol 23:253–427

    Google Scholar 

  • Siddiquie HN, Das Gupta DR, Sen Gupta NR, Shrivastava PC, Mallik TK (1978) Manganese-Iron nodules from the Indian Ocean. Ind J Mar Sci 7:239–253

    Google Scholar 

  • Theil H (ed) (2001) Environmental impact study for mining of polymetallic nodules from the deep sea. Deep-Sea Res II 48:3427–3882

    Google Scholar 

  • Thijssen T, Glasby GP, Schmitz WA, Friedrich G, Kunzendorf H, Muller D, Richter H (1981) Reconnaissance survey of Manganese Nodules from the Northern Sector of the Peru Basin. Mar Min 2:385–428

    Google Scholar 

  • Tkatchenko GG, Radziejewska T, Stoyanova V, Modlitba I, Parizek A (1996) Benthic Impact experiment in the IOM pioneer area: testing for effects of deep seabed disturbance. In: Proceedings of International Semimar on deep seabed mining technology. China Ocean Minerals R&D Association, Beijing, China, pp C55–C68

    Google Scholar 

  • Trueblood DD (1993) US cruise report for BIE II cruise. Techical Memorandum No. OCRS 4, National Oceanic and Atmospheric Administration, Washington, p 51.

    Google Scholar 

  • UN (1990) Draft regulations on prospecting, exploration and exploitation of polymetallic nodules in the Area. Part VIII. Protection and preservation of the marine environment from activities in the Area. Working paper by Secretariat, UNODC. LOC/PCN/SCN3/WP6/add.5

    Google Scholar 

  • UNOET (1982) Assessment of manganese nodule resources. UN Ocean Economics and Technology Branch and Graham & Trotman Limited London, 79pp

    Google Scholar 

  • UNOET (1987) Delineation of mine sites and potential in different sea areas. UN Ocean Economics and Technology Branch and Graham & Trotman Limited, London, 79pp

    Google Scholar 

  • Usui A, Matsumoto K, Sekimoto M, Okamoto N (2003). Geological study of cobalt-rich ferro-manganese crusts using a camera-monitored drill machine in the Marshall Islands Area. In: Proceedings of ISOPE-Ocean Mining symposium, International Society for Offshore and Polar Engineers, Tsukuba, pp 12–15

    Google Scholar 

  • Usui A, Moritani T (1992) Manganese nodule deposits in the Central Pacific Basin: distribution, geochemistry and genesis. In: Keating BH, Bolton BR (eds) Geology and offshore mineral resources of the Central Pacific Basin, Earth Science series, vol 14. Springer, New York, pp 205–223

    Chapter  Google Scholar 

  • Wiltshire JC (2000) Innovation in marine ferromanganese oxide tailings disposal. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press, Boca Raton, pp 281–308

    Google Scholar 

  • Yamada H, Yamazaki T (1998) Japan’s ocean test of the nodule mining system. In: Proceedings of international offshore and polar engineering conference. International Society for Offshore and Polar Engineers, Montreal, Canada, pp 13–19

    Google Scholar 

  • Yamazaki T, Sharma R (2001) Estimation of sediment properties during benthic impact experiments. Mar Georesour Geotechnol 19:269–289

    Article  Google Scholar 

Download references

Acknowledgments

Author gratefully acknowledges the permission given by Secretary General, International Seabed Authority, Jamaica, for reproducing the maps from website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharma, R. (2017). Deep-Sea Mining: Current Status and Future Considerations. In: Sharma, R. (eds) Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-52557-0_1

Download citation

Publish with us

Policies and ethics