Skip to main content

Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

  • Chapter
  • First Online:
Geodynamics of the Latin American Pacific Margin

Abstract

This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named “La Venta Fault” shows evidence of recent activity, corroborated also by GPS measurements (4–5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995 and 2008, revealed that frequent normal faults, sub-parallel to the trench, could be reactivated in the current stress field related to the Cocos subduction. Moreover, these features could also be reactivated by subduction megathrust earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.G., Singh, S.K., Espindola, J.M., and Yamamoto J. (1989). Seismic strain release in the Mexican subduction thrust. Phys. Earth Planet. Inter. 58, 307–322.

    Article  Google Scholar 

  • Aron, F., Allmendinger, R.W., Cembrano, J., González, G., and Yáñez, G. (2013). Permanent fore-arc extension and seismic segmentation: Insights from the 2010 Maule earthquake, Chile. J. Geophys. Res. B: Solid Earth. 118(2), 724–739.

    Google Scholar 

  • Arriagada, C., Arancibia, G., Cembrano, J., Martínez, F., Carrizo, D., Van Sint Jan, M., Sáez, E., González, G., Rebolledo, S., Sepúlveda, S.A., Contreras-Reyes, E., Jensen, E., and Yañez, G. (2011). Nature and tectonic significance of co-seismic structures associated with the Mw 8.8 Maule earthquake, central-southern Chile forearc. J. Struct. Geol. 33 (5), 891–897.

    Article  Google Scholar 

  • Avé Lallemont, H.G., and Oldow, J.S. (2000). Active displacement partitioning and arc-parallel extension of the Aleutian volcanic arc based on Global Positioning System geodesy and kinematic analysis. Geology 28(8), 739–742.

    Article  Google Scholar 

  • Barckhausen, U., Ranero, C.R., von Huene, R., Cande, S.C., and Roeser, H.A. (2001). Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models. J. Geohys. Res. B. 106, 19207–19220, doi:10.1029/2001JB000238.

    Article  Google Scholar 

  • Bartholow, J.M., 1989. Stream temperature investigations: field and analytic methods. Instream Flow Information Paper No. 13., U.S. Fish Wildl. Serv. Biol. Rep. 89 (17), 139 pp.

    Google Scholar 

  • Bekaert, D.P.S., Hooper, A., and Wright, T.J. (2015). Reassessing the 2006 Guerrero slow slip event, Mexico: implications for large earthquakes in the Guerrero Gap. Journal of Geophysical Research: Solid Earth, In Press.

    Google Scholar 

  • Berglar, K., Gaedicke, Ch., Franke, D., Ladage, S., Klingelhoefer, F., and Djajadihardja, Y.S. (2010). Structural evolution and strike-slip tectonics off north-western Sumatra. Tectonophysics 480(1–4), 119–132.

    Article  Google Scholar 

  • Bierman, P.R., and Montgomery, D.R., Key Concepts in Geomorphology (W. H. Freeman Publisher 2014).

    Google Scholar 

  • Burbank, D.W. (1992). Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature 357, 680–682.

    Article  Google Scholar 

  • Burbank, D.W., and Anderson, R.S., Tectonic Geomorphology (Blackwell Scientific, Oxford 2001).

    Google Scholar 

  • Campa, M.F., and Coney, P.J. (1983). Tectono-stratigraphic terranes and mineral distributions in Mexico. Can. J. Earth Sci. 20, 1040–1051.

    Article  Google Scholar 

  • Campa Uranga, M.F., García Díaz, J.L., García, J.B., Torreblanca Castro, T. de J., Aguilera Martínez, M.A., and Martínez, A.V. (1998). Carta Geológico-Minera Chilpancingo E14-8, Guerrero, Oaxaca y Puebla. Servicio Geológico Mexicano and Universidad Autónoma de Guerrero, carta E14–8, scale 1:250,000.

    Google Scholar 

  • Carranza, E.R., Aguilera Martínez, M.A., and Martínez, A.V. (1999). Carta Geológico-Minera Zihuatanejo E14-7-10, Guerrero. Servicio Geológico Mexicano, carta E14–7-10, scale 1:250,000.

    Google Scholar 

  • Cáseres, D., Monterroso, D., and Tavakoli, B., 2005. Crustal deformation in northern Central America. Tectonophysics 404, 119–131.

    Article  Google Scholar 

  • Choy, G.L., and Kirby, S.H. (2004). Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys. J. Int. 159, 991–1012.

    Article  Google Scholar 

  • Cortés-Aranda, J., González, L.G., Rémy, D., and Martinod, J. (2015). Normal upper plate fault reactivation in northern Chile and the subduction earthquake cycle: From geological observations and static Coulomb Failure Stress Change (CFS). Tectonophysic. 639, 118–131, doi:10.1016/j.tecto.2014.11.019.

    Article  Google Scholar 

  • Corti, G., Carminati, E., Mazzarini, F., and Oziel Garcia, M. (2005). Active strike-slip faulting in El Salvador, Central America. Geology 33 (12), 989–992.

    Article  Google Scholar 

  • Cruz López, D.E., Sánchez Andraca, H.R. and Bustos, O.L. (2000). Carta Geológico-Minera Acapulco E14-11, Guerrero y Oaxaca. Servicio Geológico Mexicano, carta E14–11, scale 1:250,000.

    Google Scholar 

  • Delouis, B., Philip, H., Dorbath, L., and Cisternas, A. (1998). Recent crustal deformation in the Antofagasta region (northern Chile) and the subduction process. Geophys. J. Int. 132, 302–338.

    Article  Google Scholar 

  • DeMets, C., 1992. Oblique convergance and defroamtion along the Kuril and Japan Trenches. J. Geophys Res. 97 (B12), 17,615–17,625.

    Google Scholar 

  • DeMets, C., Gordon, R. G., and Argus, D. F. (2010). Geologically current plate motions, Geophys. J. Int. 181 (1), 1–80, doi:10.1111/j.1365-246X.2009.04491.x.

    Article  Google Scholar 

  • Demoulin, A. (1998). Testing the tectonic significance of some parameters of longitudinal river profiles: the case of the Ardenne (Belgium, NW Europe). Geomorphology 24, 189–208.

    Google Scholar 

  • Ducea, M.N., Gehrels, G.E., Shoemaker, S., Ruiz, J., and Valencia, V.A. (2004). Geologic evolution of the Xolapa Complex, southern Mexico: evidence from U–Pb zircon geochronology. Geol. Soc. Am. Bull. 116, 1016–1025.

    Article  Google Scholar 

  • Echtler, H.P., Glodny, J., Gräfe, K., Rosenau, M., Melnick, D., Seifert, W., and Vietor, T. (2003). Active tectonics controlled by inherited structures in the long-term stationary and non-plateau south–central Andes, EGU/AGU Joint Assembly, Nice, EAE03-A-10902.

    Google Scholar 

  • Elliott, A.J., Dolan, J.F., and Oglesby, D.D. (2009). Evidence from coseismic slip gradients for dynamic control on rupture propagation and arrest through stepovers. J. Geophys. Res.: Solid Earth, 114 (B2).

    Google Scholar 

  • Farías, M., Comte, D., Roecker, S., Carrizo, D., and Pardo, M. (2011). Crustal extensional faulting triggered by the 2010 Chilean earthquake: The Pichilemu Seismic Sequence. Tectonics. 30(6), TC6010, doi:10.1029/2011TC002888.

    Article  Google Scholar 

  • Fernandez, M. (2009). Seismicity of the Pejibaye-Matina, Costa Rica, region: a strike-slip tectonic boundary? Geofis. Int. 48 (4), 351–364.

    Google Scholar 

  • Fitch, T.J. (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific, J. Geophys. Res. 77, 4432–4460.

    Article  Google Scholar 

  • Fossen, H., Structural Geology (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  • Gasparini, N.M., and Whipple, K.X. (2014). Diagnosing climatic and tectonic controls on topography: Eastern flank of the northern Bolivian Andes. Litosphere, doi:10.1130/L322.1.

    Article  Google Scholar 

  • Gripp, A.E., and Gordon R.G. (2002). Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361.

    Article  Google Scholar 

  • Gutscher, M.-A., and Lallemand, S. (1999). Birth of a major strike-slip fault in SW Japan. Terra Nova 11, 203–209.

    Article  Google Scholar 

  • Haeussler, P. J., Schwartz, D. P., Dawson, T. E., Stenner, H. D., Lienkaemper, J. J., Sherrod, B., Cinti F.R., Montone P., Craw P.A., Crone A.J., and Personius, S. F. (2004). Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska. B. Seismol. Soc. Am. 94 (6B), S23–S52.

    Google Scholar 

  • Harris, R.A., and Day, S.M. (1993). Dynamics of fault interaction: Parallel strike-slip faults. J. Geophys. Res. 98(B3), 4461–4472.

    Article  Google Scholar 

  • Harris, R.A., Archuleta, R.J., and Day, S.M. (1991). Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture. Geophys. Res. Let. 18(5), 893–896.

    Article  Google Scholar 

  • Herrmann, U., Nelson, B.K., and Ratschbacher, L. (1994). The origin of a terrane: U/Pb zircon geochronology and tectonic evolution of the Xolapa complex (southern Mexico): Tectonics 13, 455–474, doi:10.1029/93TC02465.

    Article  Google Scholar 

  • Hernández-Santana, J.R., and Ortiz-Pérez, M.A. (2005). Análisis morfoestructural de las cuencas hidrográficas de los ríos Sabana y Papagayo (Tercio Medio-Inferior), Estado de Guerrero. Investigaciones Geográficas, Bol del Inst. de Geogr., UNAM 56, 7–25.

    Google Scholar 

  • Howard, A.D. (1967). Drainage analysis in geologic interpretation; a summation. AAPG Bull. 51, 2246–2259.

    Google Scholar 

  • Imanishi, K., Ando, R., and Kuwahara, Y. (2012). Unusual shallow normal-faulting earthquake sequence in compressional northeast Japan activated after the 2011 off the Pacific coast of Tohoku earthquake. Geophysical Research Letters, 39(9).

    Article  Google Scholar 

  • Ito, Y., Tsuji, T., Osada, Y., Kido, M., Inazu, D., Hayashi, Y., Tsushima, H., Hino, R., and Fujimoto, H. (2011). Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L00G05, doi:10.1029/2011GL048355.

    Article  Google Scholar 

  • Jackson, J., Norris, R., and Youngson, J. (1996). The structural evolution of active fault and fold systems in central Otago, New Zealand: evidence revealed by drainage patterns. J. Struct. Geol. 18, 217–234.

    Article  Google Scholar 

  • Jarrard, R. D. (1986). Terrane motion by strike-slip faulting of forearc slivers. Geology 14, 780–783.

    Article  Google Scholar 

  • Kato, A., Sakai, S. I., and Obara, K. (2011). A normal-faulting seismic sequence triggered by the 2011 off the Pacific coast of Tohoku Earthquake: Wholesale stress regime changes in the upper plate. Earth, planets and space, 63(7), 745–748.

    Article  Google Scholar 

  • Kimura, G. (1986). Oblique subduction and collision: Forearc tectonics of the Kuril arc. Geology 14, 404–407, doi:10.1130/0091-7613(1986)14<404:OSACFT>2.0.CO;2.

    Article  Google Scholar 

  • Knuepfer, P.L.K. (1989). Implications of the characteristics of end-points of historical surface fault ruptures for the nature of fault segmentation. Fault Segmentation and Controls of Rupture Initiation and Termination, 89–315.

    Google Scholar 

  • Kostoglodov, V., and Ponce, L. (1994). Relationship between subduction and seismicity in the Mexican part of the Middle America trench. J. Geophys. Res. 99, 729–742, 1994.

    Article  Google Scholar 

  • Kostoglodov, V., Cotte, N., Walpersdorf, A., Husker, A., and Santiago, J.A. (2014). Mysterious SSE of the Guerrero land. in: Proceedings of the Annual Meeting of the Mexican Geophysical Union, 2–7 Novemeber, 2014, Puerto Vallarta, Mexico.

    Google Scholar 

  • Kostoglodov V., Husker A., Santiago J.A., Cruz-Atienza V.M., Cotte N., and Walpersdorf A. (2015). Three types of Slow Slip Events in Guerrero, Mexico. in: Tectonic Tremor and Silent Seismicity, International Workshop, 25–27 February, 2015, Mexico, Abstract Book, 14p.

    Google Scholar 

  • Kostoglodov, V., Singh S. K., Santiago J. A., Franco S. I., Larson K. M., Lowry A. R., and Bilham R. (2003). A large silent earthquake in the Guerrero seismic gap, Mexico. Geophys. Res. Lett., 30 (15), 1807, doi:10.1029/2003GL017219.

  • Kreemer, C., Holt W.E., and Haines A.J. (2003). An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int., 154, 8-34.

    Article  Google Scholar 

  • Lange, D., Rietbrock, A., Haberland, C., Bataille, K., Dahm, T., Tilmann, F., and Flüh, E. (2007). Seismicity and geometry of the south Chilean subduction zone (41.5°S–43.5°S): implications for controlling parameters. Geophys. Res. Lett. 34, L06311. doi:10.1029/2006GL029190.

  • Lange, D., Cembrano, J., Rietbrock, A., Haberland, C., Dahm, T., and Bataille, K. (2008). First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. Tectonophysics 455, 14–24.

    Google Scholar 

  • Li, C. (1993). Forearc Structures and Tectonics in the Southern Peru-Northern Chile Continental Margin. Mar. Geophys. Res. 17, 97–113.

    Article  Google Scholar 

  • Lowry, A.R., Larson, K.M., Kostoglodov, V., and Sanchez, O. (2006). The fault slip budget in Guerrero, southern Mexico. Geophys. J. Int., 200, unpublished: http://aconcagua.geol.usu.edu/~arlowry/Papers/Budget.pdf.

  • Lozos, J.C., Oglesby, D.D., Brune, J.N., and Olsen, K.B. (2015). Rupture Propagation and Ground Motion of Strike-Slip Stepovers with Intermediate Fault Segments. B. Seismol. Soc. Am. 105(1), 387–399.

    Article  Google Scholar 

  • Mazzotti, S., Dragert, H., Hyndman, R.D., Miller, M.M., and Henton, J.A. (2014). GPS deformation in a region of high crustal seismicity: N. Cascadia forearc. Earth Planet. Sci. Lett. 198 (1–2), 41–48.

    Article  Google Scholar 

  • McCaffrey, R. (1992). Oblique plate convergence, slip vectors, and forearc deformation. J. Geophys. Res. 97, 8905–8915.

    Article  Google Scholar 

  • McCaffrey, R. (2009). The Tectonic Framework of the Sumatran Subduction Zone. Annu. Rev. Earth Planet. Sci. 37, 345–366.

    Article  Google Scholar 

  • McCaffrey, R, Zwick, P, Bock, Y, Prawirodirdjo, L, Genrich, J, Stevens, C.W., Puntodewo, S.S.O., and Subarya, C. (2000). Strain partitioning during oblique plate convergence in northern Sumatra: geodetic and seismologic constraints and numerical modeling. J. Geophys. Res. 105, 28363–76.

    Article  Google Scholar 

  • McCalpin, J.P. (Ed.), Paleoseismology (Academic press, Vol. 95, 2009).

    Google Scholar 

  • Melnick, D., Bookhagen, B., Strecker, M.R., and Echtler, H.P. (2009). Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile. J. Geophys. Res. 114, B01407, doi:10.1029/2008JB005788.

  • Meltzner, A.J., Sieh, K., Abrams, M., Agnew, D.C., Hudnut, K.W., Avouac, J.-P, and Natawidjaja, D.H. (2006). Uplift and subsidence associated with the great Aceh-Andaman earthquake of 2004. J. Geophys. Res. 111, B02407, doi:10.1029/2005JB003891.

    Article  Google Scholar 

  • Mendoza A.I. (2004). Algunos eventos recientes asociados a la brecha sísmica de Guerrero: Implicaciones para la sismotectónica y el peligro sísmico de la región. PhD thesis, UNAM, Mexico City.

    Google Scholar 

  • Meschede, M., Frisch, W., Herrmann, U., and Ratschbacher, L. (1996). Stress transmission across an active plate boundary: An example from southern Mexico. Tectonophysics 266, 81–100, doi:10.1016/S0040-1951(96)00184-9.

    Article  Google Scholar 

  • Métois, M., Socquet, A., and Vigny C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. J. Geophys. Res. 117, B03406, doi:10.1029/2011JB008736.

  • Molnar, P., and Dayem, K.E. (2010). Major intracontinental strike-slip faults and contrasts in lithospheric strength. Geosphere 6 (4), 444–467.

    Article  Google Scholar 

  • Morell, K.D., Fisher, D.M., and Gardner, T.W. (2008). Inner forearc response to subduction of the Panama Fracture Zone, southern Central America. Earth Planet. Sci. Lett. 265, 82–95.

    Article  Google Scholar 

  • Moreno, M.S., Klotz, J., Melnick, D., Echtler, H., and Bataille, K. (2008). Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36–39 S), Geochem. Geophys. Geosyst. 9, Q12024, doi:10.1029/2008GC002198.

    Article  Google Scholar 

  • Natawidjaja, D.H., Sieh, K., Chlieh, M., Galetzka, J., Suwargadi, B.W., Cheng, H., Edwards, R.L., Avouac, J.-P., and Ward, S.N. (2006). Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls, J. Geophys. Res. 111, B06403, doi:10.1029/2005JB004025.

    Article  Google Scholar 

  • Onur, T., and Seemann, M.R. (2004). Probabilities of significant earthquake shaking in communities across British Columbia: implications for emergency management. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1–6, 2004, no. 1065.

    Google Scholar 

  • Ortner, H., Reiter, F., and Acs, P. (2002). Easy handling of tectonic data: the programs TectonicsVB for Mac and TectonicsFP for Windows. Comput. Geosci. 28, 1193–1200.

    Article  Google Scholar 

  • Ouchi, S. (1985). Response of alluvial rivers to slow active tectonics movement. Geol. Soc. Am. Bull. 96, 504–515.

    Article  Google Scholar 

  • Pacheco, J.F., and Singh, S.K. (2010). Seismicity and state of stress in Guerrero segment of the Mexican subduction zone. J. Geophys. Res. 115, doi:10.1029/2009JB006453.

  • Pacheco, J. F., Iglesias, A., and Singh, S.K. (2002). The 8 October Coyuca, Guerrero, Mexico earthquake (Mw 5.9): A normal fault in the expected compressional environment. Seism. Res. Lett. 73(2), 263.

    Google Scholar 

  • Pérez-Gutiérrez, R., Solari, L.A., Gómez, T.A., and Martens, U. (2009). Mesozoic geologic evolution of the Xolapa migmatitic Complex north of Acapulco, southern Mexico, and its tectonic significance. Revista Mexicana de Ciencias Geológicas, 26, 201–221.

    Google Scholar 

  • Plafker, G. (1969). Tectonics of the March 27, 1964 Alaska earthquake: U.S. Geological Survey Professional Paper 543–I, 74 p., 2 sheets, scales 1:2,000,000 and 1:500,000, http://pubs.usgs.gov/pp/0543i/.

  • Ramírez-Herrera, M.T. (1998). Geomorphic assessment of active tectonics in the Acambay Graben, Mexican Volcanic Belt. Earth Surf. Process. Landf. 23, 317–332.

    Article  Google Scholar 

  • Ramírez-Herrera, M.T. and Urrutia-Fucugauchi, J. (1999). Morphotectonic zones along the coast of the Pacific continental margin, southern Mexico. Geomorphology 28, 237–250.

    Google Scholar 

  • Ramírez-Herrera, M.T., Cundy, A., Kostoglodov, V., Carranza-Edwards A., Morales E., and Metcalfe, S. (2007). Sedimentary record of late Holocene relative sea-level change and tectonic deformation from the Guerrero Seismic Gap, Mexican Pacific Coast. Holocene 17/8, 1211–1220.

    Article  Google Scholar 

  • Ramírez-Herrera, M.T., Cundy, A., Kostoglodov, V., and Ortiz, M. (2009). Late Holocene tectonic land-level changes and tsunamis at Mitla lagoon, Guerrero, México. Geofis. Int. 48, 195–209.

    Google Scholar 

  • Ramirez-Herrera, M.T., Kostoglodov, V., and Urrutia-Fucugauchi, J. (2010). Overview of Recent Tectonic Deformation in the Mexican Subduction Zone. Pure Appl. Geophys. PAAG-320, doi:10.1007/s00024-010-0205-y.

    Article  Google Scholar 

  • Ramsay, J.G. (1967). Folding and Fracturing of Rocks. McGraw-Hill Book Co. Inc., New York.

    Google Scholar 

  • Ramsay, J.G. and Lisle, R.J., The Techniques of Modern Structural Geology, 3: Applications of Continuum Mechanics in Structural Geology (Academic Press, London 2000, 702–1061).

    Google Scholar 

  • Rehak, K, Strecker, M., and Echtler, H. (2008). Morphotectonic segmentation of an active forearc, 37°–41°S, Chile. Geomorphology 94, 98–116.

    Article  Google Scholar 

  • Riller, U., Ratschbacher, L., and Frisch, W. (1992). Left-lateral transtension along the Tierra Colorada deformation zone, northern margin of the Xolapa magmatic arc of southern Mexico. J. S. Am. Earth Sci. 5, 237–249, doi:10.1016/0895-9811(92)90023-R.

    Article  Google Scholar 

  • Ryder, I., Rietbrock, A., Kelson, K., Bürgmann, R., Floyd, M., Socquet, A., Vigny, C., and Carrizo, D. (2012). Large extensional aftershocks in the continental forearc triggered by the 2010 Maule earthquake, Chile. Geophys. J. Int. 188(3), 879–890.

    Article  Google Scholar 

  • Schaaf, P., Morán-Zenteno, D.J., Hernández-Bernal, M.S., Solís-Pichardo, G., Tolson, G., and Kohler, H. (1995). Paleogene continental margin truncation in southwestern Mexico: Geochronological evidence. Tectonics 14, 1339–1350, doi:10.1029/95TC01928.

    Article  Google Scholar 

  • Schumm, S.A., Dumont, J.F., Holbrook, J.M., Active Tectonics and Alluvial Rivers (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  • Sedlock, R.L., Ortega-Gutiérrez, F., and Speed, R.C. (1993). Tectonostratigraphic terranes and tectonic evolution of Mexico. Geological Society of America, Special Paper 278.

    Google Scholar 

  • Shirzaei, M, Bürgmann, R., Oncken, O., Walter, T.R., Victor, P., and Ewiak, O. (2012). Response of crustal faults to megathrust earthquakes cycle: InSAR evidence from Mejillones Peninsula, northern Chile. Earth Planet. Sci. Lett. 333–334, 157–164, doi:10.1016/j.epsl.2012.04.001.

    Article  Google Scholar 

  • Simons, M., Minson, S.E., Sladen, A., Ortega, F., Owen, S.E. Meng, L., Ampuero, J-P., Wei, S., Chu, R., Helmberger, D.V., Kanamori, H., Hetland, E., Moore, A.W., and Webb, F.H. (2011). The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries. Science 332, 1421–1425. doi:10.1126/science.1206731.

    Article  Google Scholar 

  • Singh, S.K., and Mortera, F. (1991). Source-time functions of large Mexican subduction earthquakes, morphology of the Benioff zone and the extent of the Guerrero gap. J. Geophys. Res. 96, 21,487–21,502.

    Article  Google Scholar 

  • Singh, S. K., Ordaz, M., Alcántara, L., Shapiro, N., Kostoglodov, V., Pacheco, J. F., Alcocer, S., Gutiérez, C., Quaas, R., Mikumo, T., and Ovando, E. (2000). The Oaxaca Earthquake of 30 September 1999 (Mw = 7.5): a normal-faulting event in the subducted Cocos plate. Seismol. Res. Lett. 71(1), 67–78.

    Google Scholar 

  • Solari, L.A., Torres de León, R., Hernández Pineda, G., Solé, J., Solís-Pichardo, G., and Hernández-Treviño, T. (2007). Tectonic significance of Cretaceous–Tertiary magmatic and structural evolution of the northern margin of the Xolapa Complex, Tierra Colorada area, southern Mexico. GSA Bulletin 119, 9/10, 1265–1279; doi:10.1130B26023.1.

    Google Scholar 

  • Soto, M.D., Mann, P., Escalona, A., and Wood, L.J. (2007). Late Holocene strike-slip offset of a subsurface channel interpreted from three-dimensional seismic data, eastern offshore Trinidad. Geology 35 (9), 859–862.

    Article  Google Scholar 

  • Stokes, M., Mather, A.E., Belfoul, A., and Farik, F. (2008). Active and passive tectonic controls for transverse drainage and river gorge development in a collisional mountain belt (Dades Gorges, High Atlas Mountains, Morocco). Geomorphology 102, 2–20.

    Article  Google Scholar 

  • Subarya, C., Chlieh, M., Prawirodirdjo, L., Avouac, J.P., Bock, Y., Sieh, K., Meltzner, A.J., Natawidjaja, D.H., and McCaffrey, R. (2006). Plate-boundary deformation associated with the great Sumatra-Andaman earthquake. Nature 440, 46–51.

    Article  Google Scholar 

  • Tajima, F., Mori, J., and Kennett, B.L.N. (2013). A review of the 2011 Tohoku-Oki earthquake (Mw 9.0): Large-scale rupture across heterogeneous plate coupling. Tectonophysics 586, 15–34. doi:10.1016/j.tecto.2012.09.014.

    Article  Google Scholar 

  • Talavera-Mendoza, O., Ruiz, J., Corona-Chavez, P., Gehrels, G.E., Sarmiento-Villagrana, A., García-Díaz, J.L., and Salgado-Souto, S.A. (2013). Origin and provenance of basement metasedimentary rocks from the Xolapa Complex: New constraints on the Chortis–southern Mexico connection. Earth Planet. Sci. Lett. 369–370, 188–199.

    Article  Google Scholar 

  • Toda, S., and Tsutsumi, H. (2013). Simultaneous Reactivation of Two, Subparallel, Inland Normal Faults during the Mw 6.6 11 April 2011 Iwaki Earthquake Triggered by the Mw 9.0 Tohoku-oki, Japan, Earthquake. Bull. Seismol. Soc. Am. 103(2B), 1584–1602.

    Google Scholar 

  • Tolson, G. (2005). La falla Chacalapa en el sur de Oaxaca. Bol. Soc. Geol. Mex. 57, 111–122.

    Article  Google Scholar 

  • Valencia, V.A., Ducea, M., Talavera-Mendoza, O., Gehrels, G., Ruiz, J., and Shoemaker, S. (2009). U-Pb geochronology of granitoids in the north-western boundary of the Xolapa Terrane. Revista Mexicana en Ciencias Geologicas 26 (1), 189–200.

    Google Scholar 

  • Vargas, G., Rebolledo, S., Sepúlveda, S., Lahsen, A., Thiele, R., Townley, B., Padilla, C., Rauld, R., Herrera, M., and Lara, M. (2013). Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes. Andean Geol. 40 (1), 141–171.

    Google Scholar 

  • Vigny, C., Socquet, A., Peyrat, S., Ruegg, J-C., Métois, M., Madariaga, R., Morvan, S., Lacassin, R., Campos, J., Carrizo, D., Bejar-Pizarro, M., Barrientos, S., Armijo, R., Aranda, C., Valderas-Bermejo, M-C., Ortega, I., Bondoux, F., Baize, S., Lyon-Caen, H., Pavex, A., Vilotte, J.P., Bevis, M., Brooks, B., Smalley, R., Parra, H., Baez, J-C., Blanco, M., Cimbaro, S., and Kendrick, E. (2011). The 2010 Mw 8.8 Maule Megathrust Earthquake of Central Chile, Monitored by GPS. Science 332, 1417–1421, doi:10.1126/science.1204132.

    Article  Google Scholar 

  • Wells, D.L., and Coppersmith, K.J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. B. Seismol. Soc. Am. 84(4), 974–1002.

    Google Scholar 

  • Wesnousky, S.G. (2006). Predicting the endpoints of earthquake ruptures. Nature 444(7117), 358–360.

    Article  Google Scholar 

  • Wortel, R., and Cloetingh, S. (1981). On the origin of the Cocos-Nazca spreading center. Geology 9, 425–430.

    Article  Google Scholar 

  • Żaba, J., Małolepszy, Z., Gaidzik, K., Ciesielczuk, J. and Paulo, A. (2012). Faults network in the Rio Colca valley between Maca and Pinchollo, Central Andes, Southern Peru. ASGP 82 (3), 279–290.

    Google Scholar 

Web references

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Ramírez-Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Gaidzik, K., Ramírez-Herrera, M.T., Kostoglodov, V. (2016). Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone. In: Bandy, W.L., Dañobeitia, J., Gutiérrez, C., Taran, Y., Bartolomé, R. (eds) Geodynamics of the Latin American Pacific Margin. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-51529-8_12

Download citation

Publish with us

Policies and ethics