Skip to main content

3D-Wall Motion Tracking: Measuring Myocardial Strain with 3D

  • Chapter
  • First Online:
Manual of 3D Echocardiography
  • 1087 Accesses

Abstract

The study of myocardial mechanics with echocardiography has been enhanced in the last two decades by strain analysis with tissue Doppler and 2D speckle tracking technologies. These methods offer a limited approach because of the angle and plane limitations. 3D speckle tracking is expected to overcome these limitations by using a three-dimensional approach. In this chapter, we will review the background and technical aspects of this technology; we will propose an acquisition protocol and explain the wide options of processing available; the different strain parameters will be defined and explained with a wider explanation of new indexes such as area strain or 3D strain; we will make a brief review of the clinical applications available in the current literature;and also the limitations and possible future improvements will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bjørnstad K, al Amri M, Lingamanaicker J, Oqaili I, Hatle L. Interobserver and intraobserver variation for analysis of left ventricular wall motion at baseline and during low and high-dose dobutamine stress echocardiography in patients with high prevalence of wall motion abnormalities at rest. J Am Soc Echocardiogr. 1996;9(3):320–8. PubMed PMID: 8736017.

    Article  PubMed  Google Scholar 

  2. Heimdal A, Støylen A, Torp H, Skjaerpe T. Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr. 1998;11(11):1013–9. PubMed PMID: 9812093.

    Article  CAS  PubMed  Google Scholar 

  3. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004;17(10):1021–9. PubMed PMID: 15452466.

    Article  PubMed  Google Scholar 

  4. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24(3):277–313. doi:10.1016/j.echo.2011.01.015. PubMed PMID: 21338865.

    Article  PubMed  Google Scholar 

  5. Helle-Valle T, Crosby J, Edvardsen T, Lyseggen E, Amundsen BH, Smith HJ, et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation. 2005;112:3149–56.

    Article  PubMed  Google Scholar 

  6. Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol. 2006;47:1313–27.

    Article  PubMed  Google Scholar 

  7. Jurcut R, Wildiers H, Ganame J, D’hooge J, De BJ, Denys H, et al. Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr. 2008;21:1283–9.

    Article  PubMed  Google Scholar 

  8. Bijnens B, Claus P, Weidemann F, Strotmann J, Sutherland GR. Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation. 2007;116:2453–64.

    Article  PubMed  Google Scholar 

  9. Bjork IC, Rozis E, Slordahl SA, Marwick TH. Incremental value of strain rate imaging to wall motion analysis for prediction of outcome in patients undergoing dobutamine stress echocardiography. Circulation. 2007;115:1252–9.

    Google Scholar 

  10. Kukulski T, Jamal F, Herbots L, D’hooge J, Bijnens B, Hatle L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol. 2003;41:810–9.

    Article  PubMed  Google Scholar 

  11. Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation. 2003;107:2120–6.

    Article  PubMed  Google Scholar 

  12. Weidemann F, Jung P, Hoyer C, Broscheit J, Voelker W, Ertl G, et al. Assessment of the contractile reserve in patients with intermediate coronary lesions: a strain rate imaging study validated by invasive myocardial fractional flow reserve. Eur Heart J. 2007;28:1425–32.

    Article  PubMed  Google Scholar 

  13. Faber L, Prinz C, Welge D, Hering D, Butz T, Oldenburg O, et al. Peak systolic longitudinal strain of the lateral left ventricular wall improves after septal ablation for symptomatic hypertrophic obstructive cardiomyopathy: a follow-up study using speckle tracking echocardiography. Int J Cardiovasc Imaging. 2011;27(3):325–33.

    Article  PubMed  Google Scholar 

  14. Jasaityte R, Dandel M, Lehmkuhl H, Hetzer R. Prediction of short-term outcomes in patients with idiopathic dilated cardiomyopathy referred for transplantation using standard echocardiography and strain imaging. Transplant Proc. 2009;41:277–80.

    Article  CAS  PubMed  Google Scholar 

  15. Singh GK, Cupps B, Pasque M, Woodard PK, Holland MR, Ludomirsky A. Accuracy and reproducibility of strain by speckle tracking in pediatric subjects with normal heart and single ventricular physiology: a two-dimensional speckle-tracking echocardiography and magnetic resonance imaging correlative study. J Am Soc Echocardiogr. 2010;23:1143–52.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Koopman LP, Slorach C, Hui W, Manlhiot C, McCrindle BW, Friedberg MK, et al. Comparison between different speckle Trucking and color tissue Doppler techniques to measure global and regional myocardial deformation in children. J Am Soc Echocardiogr. 2010;23:919–28.

    Article  PubMed  Google Scholar 

  17. Sengupta PP, Mohan JC, Mehta V, Arora R, Pandian NG, Khandheria BK. Accuracy and pitfalls of early diastolic motion of the mitral annulus for diagnosing constrictive pericarditis by tissue Doppler imaging. Am J Cardiol. 2004;93:886–90.

    Article  PubMed  Google Scholar 

  18. Wang J, Khoury DS, Thohan V, Torre-Amione G, Nagueh SF. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation. 2007;115:1376–83.

    Article  PubMed  Google Scholar 

  19. Takeuchi M, Nishikage T, Nakai H, Kokumai M, Otani S, Lang RM. The assessment of left ventricular twist in anterior wall myocardial infarction using two-dimensional speckle tracking imaging. J Am Soc Echocardiogr. 2007;20:36–44.

    Article  PubMed  Google Scholar 

  20. Borg AN, Harrison JL, Argyle RA, Ray SG. Left ventricular torsion in primary chronic mitral regurgitation. Heart. 2008;94:597–603.

    Article  CAS  PubMed  Google Scholar 

  21. Bertini M, Marsan NA, Delgado V, van Bommel RJ, Nucifora G, Borleffs CJ, et al. Effects of cardiac resynchronization therapy on left ventricular twist. J Am Coll Cardiol. 2009;54:1317–25.

    Article  PubMed  Google Scholar 

  22. Takeuchi M, Borden WB, Nakai H, Nishikage T, Kokumai M, Nagakura T, et al. Reduced and delayed untwisting of the left ventricle in patients with hypertension and left ventricular hypertrophy: a study using twodimensional speckle tracking imaging. Eur Heart J. 2007;28:2756–62.

    Article  PubMed  Google Scholar 

  23. Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, Korinek J, Belohlavek M, Sundt III TM, et al. Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc Imaging. 2008;1:29–38.

    Article  PubMed  Google Scholar 

  24. Rovner A, Smith R, Greenberg NL, Tuzcu EM, Smedira N, Lever HM, et al. Improvement in diastolic intraventricular pressure gradients in patients with HOCM after ethanol septal reduction. Am J Physiol Heart Circ Physiol. 2003;285:H2492–9.

    Article  CAS  PubMed  Google Scholar 

  25. Ammar KA, Paterick TE, Khandheria BK, Jan MF, Kramer C, Umland MM, Tercius AJ, Baratta L, Tajik AJ. Myocardial mechanics: understanding and applying three-dimensional speckle tracking echocardiography in clinical practice. Echocardiography. 2012;29(7):861–72. doi:10.1111/j.1540-8175.2012.01712.x. Epub 2012 May 17. PubMed PMID: 22591237.

    Article  PubMed  Google Scholar 

  26. Pérez de Isla L, Balcones DV, Fernández-Golfín C, Marcos-Alberca P, Almería C, Rodrigo JL, Macaya C, Zamorano J. Three-dimensional-wall motion tracking: a new and faster tool for myocardial strain assessment: comparison with two-dimensional-wall motion tracking. J Am Soc Echocardiogr. 2009;22(4):325–30. doi:10.1016/j.echo.2009.01.001. Erratum in: J Am Soc Echocardiogr. 2009 Jun;22(6):745-e1. PubMed PMID: 19345302.

    Article  PubMed  Google Scholar 

  27. Saito K, Okura H, Watanabe N, Hayashida A, Obase K, Imai K, Maehama T, Kawamoto T, Neishi Y, Yoshida K. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr. 2009;22(9):1025–30. doi:10.1016/j.echo.2009.05.021. Epub 2009 Jun 24. PubMed PMID: 19556106.

    Article  PubMed  Google Scholar 

  28. Reant P, Barbot L, Touche C, Dijos M, Arsac F, Pillois X, Landelle M, Roudaut R, Lafitte S. Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters. J Am Soc Echocardiogr. 2012;25:68–79.

    Article  PubMed  Google Scholar 

  29. Urbano-Moral JA, Patel AR, Maron MS, Arias-Godinez JA, Pandian NG. Three-dimensional speckle-tracking echocardiography: methodological aspects and clinical potential. Echocardiography. 2012;29(8):997–1010. doi:10.1111/j.1540-8175.2012.01773.x. Epub 2012 Jul 12. Review. PubMed PMID: 22783969.

    Article  PubMed  Google Scholar 

  30. Shiota T, editor. 3D Echocardiography. Boca Raton: CRC Press; 2007.

    Google Scholar 

  31. Pérez de Isla L, Millán M, Lennie V, Quezada M, Guinea J, Macaya C, Zamorano J. Area strain: normal values for a new parameter in healthy people. Rev Esp Cardiol. 2011;64(12):1194–7. doi:10.1016/j.recesp.2011.03.021. Spanish. PubMed PMID: 21684666.

    Article  PubMed  Google Scholar 

  32. Wen H, Liang Z, Zhao Y, Yang K. Feasibility of detecting early left ventricular systolic dysfunction using global area strain: a novel index derived from three-dimensional speckle-tracking echocardiography. Eur J Echocardiogr. 2011;12(12):910–6. doi:10.1093/ejechocard/jer162. Epub 2011 Sep 6. PubMed PMID: 21900298.

    Article  PubMed  Google Scholar 

  33. Kaku K, Takeuchi M, Tsang W, Takigiku K, Yasukochi S, Patel AR, Mor-Avi V, Lang RM, Otsuji Y. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2014;27(1):55–64. doi:10.1016/j.echo.2013.10.002. Epub 2013 Nov 13. PubMed PMID: 24238753.

    Article  PubMed  Google Scholar 

  34. Jasaityte R, Heyde B, D’hooge J. Current state of three-dimensional myocardial strain estimation using echocardiography. J Am Soc Echocardiogr. 2013;26(1):15–28. doi:10.1016/j.echo.2012.10.005. Epub 2012 Nov 11. Review. PubMed PMID: 23149303.

    Article  PubMed  Google Scholar 

  35. Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kamp O. Reliability of Leith ventricular volumes and function measurements using three-dimensional speckle tracking echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13(2):159–68. doi:10.1093/ejechocard/jer174. Epub 2011 Sep 16. PubMed PMID: 21926118.

    Article  PubMed  Google Scholar 

  36. Muraru D, Cucchini U, Mihăilă S, Miglioranza MH, Aruta P, Cavalli G, Cecchetto A, Padayattil-Josè S, Peluso D, Iliceto S, Badano LP. Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants. J Am Soc Echocardiogr. 2014;27(8):858–71. e1. doi: 10.1016/j.echo.2014.05.010. Epub 2014 Jun 26. PubMed PMID: 24975996.

    Article  PubMed  Google Scholar 

  37. Kleijn SA, Pandian NG, Thomas JD, Perez de Isla L, Kamp O, Zuber M, Nihoyannopoulos P, Forster T, Nesser HJ, Geibel A, Gorissen W, Zamorano JL. Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16(4):410–6. doi:10.1093/ehjci/jeu213. Epub 2014 Oct 26. PubMed PMID: 25345661.

    Article  PubMed  Google Scholar 

  38. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, Kawamura R, Aonuma K. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging. 2009;2(6):451–9. doi:10.1161/CIRCIMAGING.109.858480. Epub 2009 Sep 12. PubMed PMID: 19920043.

    Article  PubMed  Google Scholar 

  39. Nesser HJ, Mor-Avi V, Gorissen W, Weinert L, Steringer-Mascherbauer R, Niel J, Sugeng L, Lang RM. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J. 2009;30(13):1565–73. doi:10.1093/eurheartj/ehp187. Epub 2009 May 29. PubMed PMID: 19482868.

    Article  PubMed  Google Scholar 

  40. Yuda S, Sato Y, Abe K, Kawamukai M, Kouzu H, Muranaka A, Kokubu N, Hashimoto A, Tsuchihashi K, Watanabe N, Miura T. Inter-vendor variability of left ventricular volumes and strains determined by three-dimensional speckle tracking echocardiography. Echocardiography. 2014;31(5):597–604. doi:10.1111/echo.12432. Epub 2013 Nov 6. PubMed PMID: 25070187.

    Article  PubMed  Google Scholar 

  41. Badano LP, Cucchini U, Muraru D, Al Nono O, Sarais C, Iliceto S. Use of three-dimensional speckle tracking to assess left ventricular myocardial mechanics: inter-vendor consistency and reproducibility of strain measurements. Eur Heart J Cardiovasc Imaging. 2013;14(3):285–93. doi:10.1093/ehjci/jes184. Epub 2012 Sep 11. PubMed PMID: 22968525.

    Article  PubMed  Google Scholar 

  42. Gayat E, Ahmad H, Weinert L, Lang RM, Mor-Avi V. Reproducibility and inter-vendor variability of left ventricular deformation measurements by three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2011;24(8):878–85. doi:10.1016/j.echo.2011.04.016. Epub 2011 Jun 8. PubMed PMID: 21645991.

    Article  PubMed  Google Scholar 

  43. Yodwut C, Weinert L, Klas B, Lang RM, Mor-Avi V. Effects of frame rate on three-dimensional speckle-tracking-based measurements of myocardial deformation. J Am Soc Echocardiogr. 2012;25(9):978–85. doi:10.1016/j.echo.2012.06.001. Epub 2012 Jul 4. PubMed PMID: 22766029.

    Article  PubMed  Google Scholar 

  44. Thebault C, Donal E, Bernard A, Moreau O, Schnell F, Mabo P, Leclercq C. Real-time three-dimensional speckle tracking echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Eur J Echocardiogr. 2011;12(1):26–32. doi:10.1093/ejechocard/jeq095. Epub 2010 Aug 24. PubMed PMID: 20736292.

    Article  PubMed  Google Scholar 

  45. Li CH, Carreras F, Leta R, Carballeira L, Pujadas S, Pons-Lladó G. Mechanical left ventricular dyssynchrony detection by endocardium displacement analysis with 3D speckle tracking technology. Int J Cardiovasc Imaging. 2010;26(8):867–70. doi:10.1007/s10554-010-9644-x. Epub 2010 Aug 14. PubMed PMID: 20711677.

    Article  PubMed  Google Scholar 

  46. Tanaka H, Tatsumi K, Matsumoto K, Kawai H, Hirata K. Emerging role of three-dimensional speckle tracking strain for accurate quantification of left ventricular dyssynchrony. Echocardiography. 2013;30(9):E292–5. doi:10.1111/echo.12280. Epub 2013 Jun 6. PubMed PMID: 23741972.

    PubMed  Google Scholar 

  47. Matsumoto K, Tanaka H, Tatsumi K, Miyoshi T, Hiraishi M, Kaneko A, Tsuji T, Ryo K, Fukuda Y, Yoshida A, Kawai H, Hirata K. Left ventricular dyssynchrony using three-dimensional speckle-tracking imaging as a determinant of torsional mechanics in patients with idiopathic dilated cardiomyopathy. Am J Cardiol. 2012;109(8):1197–205. doi:10.1016/j.amjcard.2011.11.059. Epub 2012 Jan 28. PubMed PMID: 22285093.

    Article  PubMed  Google Scholar 

  48. Mochizuki A, Yuda S, Oi Y, Kawamukai M, Nishida J, Kouzu H, Muranaka A, Kokubu N, Shimoshige S, Hashimoto A, Tsuchihashi K, Watanabe N, Miura T. Assessment of left atrial deformation and synchrony by three-dimensional speckle-tracking echocardiography: comparative studies in healthy subjects and patients with atrial fibrillation. J Am Soc Echocardiogr. 2013;26(2):165–74. doi:10.1016/j.echo.2012.10.003. Epub 2012 Nov 8. PubMed PMID: 23140846.

    Article  PubMed  Google Scholar 

  49. Tanaka H, Matsumoto K, Hiraishi M, Miyoshi T, Kaneko A, Tsuji T, Ryo K, Fukuda Y, Tatsumi K, Yoshida A, Kawai H, Hirata K. Multidirectional left ventricular performance detected with three-dimensional speckle-tracking strain in patients with chronic right ventricular pacing and preserved ejection fraction. Eur Heart J Cardiovasc Imaging. 2012;13(10):849–56.

    Article  PubMed  Google Scholar 

  50. Wang Q, Huang D, Zhang L, Shen D, Ouyang Q, Duan Z, An X, Zhang M, Zhang C, Yang F, Zhi G. Assessment of myocardial infarct size by three-dimensional and two-dimensional speckle tracking echocardiography: a comparative study to single photon emission computed tomography. Echocardiography. 2015;32(10):1539–46. doi:10.1111/echo.12901. Epub 2015 Feb 15. PubMed PMID: 25684359.

    Article  PubMed  Google Scholar 

  51. Nagata Y, Takeuchi M, Wu VC, Izumo M, Suzuki K, Sato K, Seo Y, Akashi YJ, Aonuma K, Otsuji Y. Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aortic stenosis and preserved LV ejection fraction. JACC Cardiovasc Imaging. 2015;8(3):235–45. doi:10.1016/j.jcmg.2014.12.009. Epub 2015 Feb 11. PubMed PMID: 25682511.

    Article  PubMed  Google Scholar 

  52. Casas-Rojo E, Fernández-Golfin C, Moya-Mur JL, González-Gómez A, García-Martín A, Morán-Fernández L, Rodríguez-Muñoz D, Jiménez-Nacher JJ, Martí Sánchez D, Zamorano Gómez JL. Area strain from 3D speckle-tracking echocardiography as an independent predictor of early symptoms or ventricular dysfunction in asymptomatic severe mitral regurgitation with preserved ejection fraction. Int J Cardiovasc Imaging. 2016;9 [Epub ahead of print] PubMed PMID: 27161336.

    Google Scholar 

  53. Nemes A, Domsik P, Kalapos A, Lengyel C, Orosz A, Forster T. Comparison of three-dimensional speckle tracking echocardiography and two-dimensional echocardiography for evaluation of left atrial size and function in healthy volunteers (results from the MAGYAR-Healthy study). Echocardiography. 2014;31(7):865–71. doi:10.1111/echo.12485. Epub 2013 Dec 17. PubMed PMID: 24341394.

    PubMed  Google Scholar 

  54. Smith BC, Dobson G, Dawson D, Charalampopoulos A, Grapsa J, Nihoyannopoulos P. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 2014;64(1):41–51. doi:10.1016/j.jacc.2014.01.084. PubMed PMID: 24998127.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Casas Rojo .

Editor information

Editors and Affiliations

Electronic Supplementary Material

(WMV 197 kb)

(AVI 3491 kb)

(WMV 197 kb)

(AVI 308 kb)

(WMV 182 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Casas Rojo, E. (2017). 3D-Wall Motion Tracking: Measuring Myocardial Strain with 3D. In: Casas Rojo, E., Fernandez-Golfin, C., Zamorano, J. (eds) Manual of 3D Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-50335-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50335-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50333-2

  • Online ISBN: 978-3-319-50335-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics