Skip to main content

The Underwater Light Climate in Kongsfjorden and Its Ecological Implications

  • Chapter
  • First Online:
The Ecosystem of Kongsfjorden, Svalbard

Abstract

Due to its Arctic location at 79°N, Kongsfjorden in Svalbard experiences strong seasonality in light climate, changing from polar night to midnight sun. Sea ice conditions and the optical properties of seawater further modify the amount and the spectral composition of solar radiation penetrating into the water column, thus defining the underwater light climate in Kongsfjorden. Light represents one of the major shaping factors for the entire marine ecosystem. A number of studies focusing on implications of the underwater light for marine organisms have been conducted in Kongsfjorden, generating diverse datasets on seawater optical properties, scattered over time and space. This review synthesizes the fragmentary information available from the literature as well as presenting some unpublished data, and discusses the underwater light climate and its main controlling factors in Kongsfjorden. Furthermore, we provide a short synopsis about the relevance of light for different components of an Arctic marine ecosystem, exemplified by studies carried out in Kongsfjorden. Due to its year-round accessibility and its high-Arctic location, Kongsfjorden has become a prime fjord for studying how the strong seasonal changes in light availability, ranging from polar night to midnight sun, affect marine life with respect to primary production, behavioural aspects and synchronization of growth and reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen MB, Browman HI, Fields DM, Skiftesvik AB (2010) The three-dimensional prey field of the northern krill, Meganyctiphanes norvegica, and the escape responses of their copepod prey. Mar Biol 157:1251–1258

    Article  PubMed  PubMed Central  Google Scholar 

  • Aksnes DL, Dupont N, Staby A, Fiksen Ø, Kaartvedt S, Aure J (2009) Coastal water darkening and implications for mesopelagic regime shifts in Norwegian fjords. Mar Ecol Prog Ser 387:39–49

    Article  CAS  Google Scholar 

  • Babin M, Stramski D, Ferrari GM, Claustre H, Bricaud A, Obolensky G, Hoepffner N (2003) Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res Oceans 108(C7):3211. https://doi.org/10.1029/2001JC000882

    Article  Google Scholar 

  • Bartsch I, Paar M, Fredriksen S, Schwanitz M, Daniel C, Hop H, Wiencke C (2016) Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol 39:2021–2036

    Article  Google Scholar 

  • Båtnes AS, Miljeteig C, Berge J, Greenacre M, Johnsen G (2015) Quantifying the light sensitivity of Calanus spp. during the polar night: potential for orchestrated migrations conducted by ambient light from the sun, moon, or aurora borealis? Polar Biol 38:51–65

    Article  Google Scholar 

  • Berge J, Cottier F, Last KS, Varpe Ø, Leu E, Søreide J, Eiane K, Falk-Petersen S, Willis K, Nygård H, Vogedes D, Griffiths C, Johnsen G, Lorenzen D, Brierley AS (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5:69–72

    Article  PubMed  Google Scholar 

  • Berge J, Cottier F, Varpe Ø, Renaud PE, Falk-Petersen S, Kwasniewski S, Griffiths C, Søreide JE, Johnsen G, Aubert A, Bjærke O (2014) Arctic complexity: a case study on diel vertical migration of zooplankton. J Plankton Res 36:1279–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Berge J, Daase M, Renaud PE, Ambrose WG Jr, Darnis G, Last KS, Leu E, Cohen JH, Johnsen G, Moline MA, Cottier F, Varpe Ø, Shunatova N, Balazy P, Morata N, Massabuau J-C, Falk-Petersen S, Kosobokova K, Hoppe CJM, Weslawski JM, Kuklinski P, Legezynska J, Nikishina D, Cusa M, Kedra M, Wlodarska-Kowalczuk M, Vogedes D, Camus L, Tran D, Michaud E, Gabrielsen TM, Granovitch A, Gonchar A, Krapp R, Callesen TA (2015a) Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr Biol 25:2555–2561

    CAS  PubMed  Google Scholar 

  • Berge J, Renaud PE, Darnis G, Cottier F, Last K, Gabrielsen TM, Johnsen G, Seuthe L, Weslawski JM, Leu E, Moline M, Nahrgang J, Søreide JE, Varpe Ø, Lønne OJ, Daase M, Falk-Petersen S (2015b) In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr 139:258–271

    Article  Google Scholar 

  • Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Article  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV-radiation. Plant Biol 1:435–444

    Article  CAS  Google Scholar 

  • Bischof K, Hanelt D, Aguilera J, Karsten U, Vögele B, Sawall T, Wiencke C (2002) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord: I. Sensitivity of photosynthesis to ultraviolet radiation. Mar Biol 140:1097–1106

    Article  CAS  Google Scholar 

  • Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166. https://doi.org/10.1007/s11157-006-0002-3

    Article  CAS  Google Scholar 

  • Blachowiak-Samolyk K, Kwasniewski S, Richardson K, Dmoch K, Hansen E, Hop H, Falk-Petersen S, Mouritzen LT (2006) Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun. Mar Ecol Prog Ser 308:101–116

    Article  Google Scholar 

  • Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53

    Article  CAS  Google Scholar 

  • Carlsen BP, Johnsen G, Berge J, Kuklinski P (2007) Biodiversity patterns of macro-epifauna on different lamina parts of Laminaria digitata and Saccharina latissima collected during spring and summer 2004 in Kongsfjorden, Svalbard. Polar Biol 30:939–943

    Article  Google Scholar 

  • Chapman A, Lindley J (1980) Seasonal growth of Laminaria solidungula in the Canadian High Arctic in relation to irradiance and dissolved nutrient concentrations. Mar Biol 57:1–5

    Article  CAS  Google Scholar 

  • Cisewski B, Strass VH, Rhein M, Krägefsky S (2010) Seasonal variation of diel vertical migration of zooplankton from ADCP backscatter time series data in the Lazarev Sea, Antarctica. Deep-Sea Res I Oceanogr Res Pap 57:78–94

    Article  CAS  Google Scholar 

  • Cohen JH, Forward RB Jr (2009) Zooplankton diel vertical migration: a review of proximate control. Oceanogr Mar Biol 47:77–110

    Article  Google Scholar 

  • Cohen JH, Berge J, Moline MA, Sørensen AJ, Last K, Falk-Petersen S, Renaud PE, Leu ES, Grenvald J, Cottier F, Cronin H, Menze S, Norgren P, Varpe Ø, Daase M, Darnis G, Johnsen G (2015) Is ambient light during the High Arctic polar night sufficient to act as a visual cue for zooplankton? PLoS One 10:e0126247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cottier FR, Tarling GA, Wold A, Falk-Petersen S (2006) Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord. Limnol Oceanogr 51:2586–2599

    Article  Google Scholar 

  • Cottier F, Nilsen F, Inall M, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607. https://doi.org/10.1029/2007GL029948

    Article  Google Scholar 

  • Cronin HA, Cohen JH, Berge J, Johnsen G, Moline MA (2016) Bioluminescence as an ecological factor during high Arctic polar night. Sci Rep 6:36374. https://doi.org/10.1038/srep36374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunton KH (1990) Growth and production in Laminaria solidungula: relation to continuous underwater light levels in the Alaskan High Arctic. Mar Biol 106:297–304

    Article  Google Scholar 

  • Fischer J, Visbeck M (1993) Seasonal variation of the daily zooplankton migration in the Greenland Sea. Deep-Sea Res I Oceanogr Res Pap 40:1547–1557

    Article  Google Scholar 

  • Fredriksen S, Bartsch I, Wiencke C (2014) New additions to the benthic marine flora of Kongsfjorden, western Svalbard, and comparison between 1996/1998 and 2012/2013. Bot Mar 57:203–216

    Article  Google Scholar 

  • Fricke A, Molis M, Wiencke C, Valdivia N, Chapman AS (2001) Effects of UV radiation on the structure of Arctic macrobenthic communities. Polar Biol 34:995–1009

    Article  Google Scholar 

  • Gerland S, Renner AHH (2007) Sea-ice mass-balance monitoring in an Arctic fjord. Ann Glaciol 46:435–442

    Article  Google Scholar 

  • Glud RN, Kühl M, Wenzhöfer F, Rysgaard S (2002) Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production. Mar Ecol Prog Ser 238:15–29

    Article  Google Scholar 

  • Gómez I, Wulff A, Roleda M, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2009) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot Mar 52:593–608

    Article  Google Scholar 

  • Granskog MA, Stedmon CA, Dodd PA, Amon RM, Pavlov AK, de Steur L, Hansen E (2012) Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: assessing the changes and fate of terrigenous CDOM in the Arctic Ocean. J Geophys Res 117:C12021. https://doi.org/10.1029/2012JC008075

    Article  Google Scholar 

  • Granskog MA, Pavlov AK, Sagan S, Kowalczuk P, Raczkowska A, Stedmon CA (2015) Effect of sea-ice melt on inherent optical properties and vertical distribution of solar radiant heating in Arctic surface waters. J Geophys Res 120:7028–7039. https://doi.org/10.1002/2015JC011087

    Article  Google Scholar 

  • Ha SY, Kim YN, Park MO, Kang SH, Kim HC, Shin KH (2012) Production of mycosporine-like amino acids of in situ phytoplankton community in Kongsfjorden, Svalbard, Arctic. J Photoch Photobio B 114:1–4

    Article  CAS  Google Scholar 

  • Hamre B, Winther J-G, Gerland S, Stamnes JJ, Stamnes K (2004) Modeled and measured optical transmittance of snow-covered first-year sea ice in Kongsfjorden, Svalbard. J Geophys Res 109:C10006. https://doi.org/10.1029/2003JC001926

    Article  Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369

    Article  Google Scholar 

  • Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B 38:40–47

    Article  CAS  Google Scholar 

  • Hanelt D, Tüg H, Bischof K, Groß C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658

    Article  CAS  Google Scholar 

  • Hanelt D, Bischof K, Wiencke C (2004) The radiation, temperature and salinity regime in Kongsfjorden. Ber Polarforsch Meeresforsch 492:14–25

    Google Scholar 

  • Hays GC (2003) A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503:163–170

    Article  Google Scholar 

  • Hegseth EN, Assmy P, Wiktor JM, Wiktor JM Jr, Kristiansen S, Leu E, Tverberg V, Gabrielsen TM, Skogseth R, Cottier F (this volume-d) Chapter 6: Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Henry EC (1987) Primitive reproductive characters and a photoperiodic response in Saccorhiza dermatodea (Laminariales, Phaeophyceae). Br Phycol J 22:23–31

    Article  Google Scholar 

  • Hodal H, Falk-Petersen S, Hop H, Kristiansen S, Reigstad M (2012) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:191–203

    Article  Google Scholar 

  • Hodgkins R (2001) Seasonal evolution of meltwater generation, storage and discharge at a non-temperate glacier in Svalbard. Hydrol Process 15:41–460

    Article  Google Scholar 

  • Holinde L, Zielinski O (2016) Bio-optical characterization and light availability parameterization in Uummannaq Fjord and Vaigat–Disko Bay (West Greenland). Ocean Sci 12:117–128

    Article  CAS  Google Scholar 

  • Hooper RG (1984) Functional adaptations to the polar environment by the Arctic kelp, Laminaria solidungula. Br Phycol J 19:194

    Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  • Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot Mar 55:399–414

    Article  Google Scholar 

  • Hop H, Kovaltchouk NA, Wiencke C (2016) Distribution of macroalgae in Kongsfjorden, Svalbard. Polar Biol 39:2037–2051

    Article  Google Scholar 

  • Hulatt CJ, Thomas DN, Bowers DG, Norman L, Zhang C (2009) Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuar Coast Shelf Sci 84:147–153

    Article  CAS  Google Scholar 

  • Hyatt J, Visbeck M, Beardsley R, Owens W (2008) Measurements of sea ice properties using a moored upward-looking acoustic Doppler current profiler (ADCP). Deep-Sea Res II 55:351–364

    Article  Google Scholar 

  • Johnsen G, Volent Z, Sakshaug E, Sigernes F, Pettersson LH (2009) Remote sensing in the Barents Sea. In: Sakshaug E, Johnsen G, Kovacs K (eds) Ecosystem Barents Sea. Tapir Academic Press, Trondheim, pp 139–166

    Google Scholar 

  • Jönsson M, Varpe Ø, Kozłowski T, Berge J, Kröger RH (2014) Differences in lens optical plasticity in two gadoid fishes meeting in the Arctic. J Comp Physiol A 200:949–957

    Article  Google Scholar 

  • Kaartvedt S, Melle W, Knutsen T, Skjoldal HR (1996) Vertical distribution of fish and krill beneath water of varying optical properties. Mar Ecol Prog Ser 136:51–58

    Article  Google Scholar 

  • Karsten U (2008) Defense strategies of algae and cyanobacteria against solar ultraviolet radiation. In: Algal chemical ecology. Springer, Heidelberg, pp 273–296

    Chapter  Google Scholar 

  • Karsten U, Bischof K, Hanelt D, Tüg H, Wiencke C (1999) The effect of ultraviolet radiation on photosynthesis and ultraviolet-absorbing substances in the endemic Arctic macroalga Devaleraea ramentacea (Rhodophyta). Physiol Plantarum 105:58–66

    Article  CAS  Google Scholar 

  • Karsten U, Schumann R, Rothe S, Jung I, Medlin L (2006) Temperature and light requirements for growth of two diatom species (Bacillariophyceae) isolated from an Arctic macroalga. Polar Biol 29:476–486

    Article  Google Scholar 

  • Karsten U, Wulff A, Roleda MY, Müller R, Steinhoff FS, Fredersdorf J, Wiencke C (2009) Physiological responses of polar benthic algae to ultraviolet radiation. Bot Mar 52:639–654

    Article  CAS  Google Scholar 

  • Karsten U, Schlie C, Woelfel J, Becker B (2012) Benthic diatoms in Arctic Seas-ecological functions and adaptions. Polarforschung 81:77–84

    Google Scholar 

  • Karsten U, Schaub I, Woelfel J, Sevilgen DS, Schlie C, Becker B, Wulff A, Graeve M, Wagner H (this volume-b) Chapter 8: Living on cold substrata – new approaches to study microphytobenthos ecophysiology and ecology in Kongsfjorden. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Keats DW, South R (1985) Aspects of the reproductive phenology of Saccorhiza dermatodea (Phaeophyta, Laminariales) in Newfoundland. Br Phycol J 20:117–122

    Article  Google Scholar 

  • Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, Gulliksen B (2012) Climate-driven regime shifts in Arctic marine benthos. Proc Natl Acad Sci U S A 109:14052–14057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosobokova KN (1978) Diurnal vertical distribution of Calanus hyperboreus Kroyer and Calanus glacialis Jaschnov in the central Polar Basin. Oceanology 18:476–480

    Google Scholar 

  • Kraft A, Berge J, Varpe Ø, Falk-Petersen S (2013) Feeding in Arctic darkness: mid-winter diet of the pelagic amphipods Themisto abyssorum and T. libellula. Mar Biol 160:241–248

    Article  Google Scholar 

  • Krüger M (2016) Photosynthese-Lichtkurven ausgewählter Makroalgenarten des Kongsfjords (Spitzbergen, Norwegen) als Grundlage für Abschätzungen der Produktivität des arktischen Kelpwaldes. Diploma thesis, Technical University of Freiberg, Germany

    Google Scholar 

  • Kupfer H, Herber A, König-Langlo G (2006) Radiation measurements and synoptic observations at Ny Aalesund, Svalbard. Ber Polarforsch Meeresforsch 538:1–115

    Google Scholar 

  • Kvernvik AC, Hoppe CJM, Lawrenz E, Prasil O, Wiktor JM, Greenacre M, Leu E (2018) Fast reactivation of photosynthesis in arctic phytoplankton during the polar night. J Phycol 54:461–470

    Article  CAS  PubMed  Google Scholar 

  • Last KS, Hobbs L, Berge J, Brierley AS, Cottier F (2016) Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Curr Biol 26:1–8

    Article  CAS  Google Scholar 

  • Latala A (1990) Photosynthesis and respiration of some marine benthic algae from Spitsbergen. Polar Res 8:303–307

    Article  Google Scholar 

  • Leu E (2006) Effects of a changing arctic light climate on the nutritional quality of phytoplankton. Dissertation, University of Oslo, Faculty of Mathematics and Natural Sciences, 194 p

    Google Scholar 

  • Leu E, Falk-Petersen S, Kwasniewski S, Wulff A, Edvardsen K, Hessen DO (2006a) Fatty acid dynamics during the spring bloom in a High Arctic fjord: importance of abiotic factors versus community changes. Can J Fish Aquat Sci 63:2760–2779

    Article  CAS  Google Scholar 

  • Leu E, Wängberg S-Å, Wulff A, Falk-Petersen S, Ørbæk JB, Hessen DO (2006b) Effects of changes in ambient PAR and UV radiation on the nutritional quality of an Arctic diatom (Thalassiosira antarctica var. borealis). J Exp Mar Biol Ecol 337:65–81

    Article  CAS  Google Scholar 

  • Leu E, Graeve M, Wulff A (2016) A (too) bright future? – Arctic diatoms under radiation stress. Polar Biol 39:1711–1724

    Article  Google Scholar 

  • Lund-Hansen LC, Andersen TJ, Nielsen MH, Pejrup M (2010) Suspended matter, Chl-a, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer. Estuar Coasts 33:1442–1451

    Article  CAS  Google Scholar 

  • Lüning K (1989) Environmental triggers in algal seasonality. Bot Mar 32:389–398

    Article  Google Scholar 

  • Lüning K (1991) Circannual growth rhythm in a brown alga, Pterygophora californica. Bot Acta 104:157–162

    Article  Google Scholar 

  • Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471

    Article  Google Scholar 

  • Maturilli M, Herber A, König-Langlo G (2015) Surface radiation climatology for Ny-Ålesund, Svalbard (78.9 N), basic observations for trend detection. Theor Appl Climatol 120:331–339

    Article  Google Scholar 

  • Maturilli M, Hanssen-Bauer I, Neuber R, Rex M, Edvardsen K (this volume-b) Chapter 2: The atmosphere above Ny-Ålesund: climate and global warming, ozone and surface UV radiation. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • McCree KJ (1981) Photosynthetically active radiation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Springer, Berlin/New York, pp 41–55

    Chapter  Google Scholar 

  • Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic, San Diego

    Google Scholar 

  • Morel A, Smith RC (1974) Relation between total quanta and total energy for aquatic photosynthesis. Limnol Oceanogr 19:591–600

    Article  Google Scholar 

  • Murray C, Markager S, Stedmon CA, Juul-Pedersen T, Sejr MK, Bruhn A (2015) The influence of glacial melt water on bio-optical properties in two contrasting Greenlandic fjords. Estuar Coast Shelf Sci 163:72–83

    Article  CAS  Google Scholar 

  • Paar M, Voronkov A, Hop H, Brey T, Bartsch I, Schwanitz M, Wiencke C, Lebreton B, Asmus R, Asmus H (2016) Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol 39:2065–2076

    Article  Google Scholar 

  • Pavlov AK, Tverberg V, Ivanov BV, Nilsen F, Falk-Petersen S, Granskog MA (2013) Warming of Atlantic Water in two west Spitsbergen fjords over the last century (1912–2009). Polar Res 32:11206. https://doi.org/10.3402/polar.v32i0.11206

    Article  Google Scholar 

  • Pavlov AK, Silyakova A, Granskog MA, Bellerby RG, Engel A, Schulz KG, Brussaard CP (2014) Marine CDOM accumulation during a coastal Arctic mesocosm experiment: no response to elevated pCO levels. J Geophys Res Biogeosci 119:1216–1230. https://doi.org/10.1002/2013JG002587

    Article  CAS  Google Scholar 

  • Pavlov AK, Granskog MA, Stedmon CA, Ivanov BV, Hudson SR, Falk-Petersen S (2015) Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications. J Mar Syst 143:62–72. https://doi.org/10.1016/j.jmarsys.2014.11.001

    Article  Google Scholar 

  • Pavlov AK, Stedmon CA, Semushin AV, Martma T, Ivanov BV, Kowalczuk P, Granskog MA (2016) Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean. Cont Shelf Res 119:1–13. https://doi.org/10.1016/j.csr.2016.03.004

    Article  Google Scholar 

  • Pavlova O, Gerland S, Hop H (this volume-c) Chapter 4: Changes in sea-ice extent and thickness in Kongsfjorden, Svalbard (2003-2016). In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Pedersen CA, Gallet JC, Ström J, Gerland S, Hudson SR, Forsström S, Isaksson E, Berntzen TK (2015) In situ observations of black carbon in snow and the corresponding spectral surface albedo reduction. J Geophys Res Atmos 120:1476–1489

    Article  CAS  Google Scholar 

  • Pettersen R, Johnsen G, Berge J, Hovland EK (2011) Phytoplankton chemotaxonomy in waters around the Svalbard archipelago reveals high amounts of Chl b and presence of gyroxanthin-diester. Polar Biol 34:627–635

    Article  Google Scholar 

  • Piquet A-T, van de Poll W, Visser R, Wiencke C, Bolhuis H, Buma A (2014) Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences 11:2263–2279

    Article  Google Scholar 

  • Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36:8710–8723

    Article  CAS  PubMed  Google Scholar 

  • Ringelberg J (2009) Diel vertical migration of zooplankton in lakes and oceans: causal explanations and adaptive significances. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Roleda MY (2016) Stress physiology and reproductive phenology of Arctic endemic kelp Laminaria solidungula J. Agardh. Polar Biol 39:1967–1978

    Article  Google Scholar 

  • Roleda MY, Hanelt D, Wiencke C (2006) Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores. Photosynth Res 88:311–322

    Article  CAS  PubMed  Google Scholar 

  • Rysgaard S, Nielsen TG (2006) Carbon cycling in a high-arctic marine ecosystem–Young Sound, NE Greenland. Prog Oceanogr 71:426–445

    Article  Google Scholar 

  • Sakshaug E, Johnsen G, Volent Z (2009) Light. In: Sakshaug E, Johnsen G, Kovacs K (eds) Ecosystem Barents Sea. Tapir Academic Press, Trondheim, pp 117–138

    Google Scholar 

  • Schulz KG, Bellerby RGJ, Brussaard CPD, Budenbender J, Czerny J, Engel A, Fischer M, Koch-Klavsen S, Krug SA, Lischka S, Ludwig A, Meyerhofer M, Nondal G, Silyakova A, Stuhr A, Riebesell U (2013) Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences 10:161–180. https://doi.org/10.5194/bg-10-161-2013

    Article  Google Scholar 

  • Sevilgen DS, de Beer D, Al-Handal A, Brey T, Polerecky L (2014) Oxygen budgets in subtidal arctic (Kongsfjorden, Svalbard) and temperate (Helgoland, North Sea) microphytobenthic communities. Mar Ecol Prog Ser 504:27–42

    Article  CAS  Google Scholar 

  • Sharp G, Allard M, Lewis A, Semple R, Rochefort G (2008) The potential for seaweed resource development in subarctic Canada; Nunavik, Ungava Bay. J Appl Phycol 20:491–498

    Article  Google Scholar 

  • Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Chang Biol 16:3154–3163

    Google Scholar 

  • Spielhagen RF, Werner K, Sørensen SA, Zamelczyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331:450–453

    Article  CAS  PubMed  Google Scholar 

  • Stedmon C, Markager S (2001) The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: an algorithm for differentiation between marine and terrestrially derived organic matter. Limnol Oceanogr 46:2087–2093

    Article  Google Scholar 

  • Stedmon CA, Amon RMW, Rinehart AJ, Walker SA (2011) The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar Chem 124:108–118

    Article  CAS  Google Scholar 

  • Svendsen H, Beszczynska-Möller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Google Scholar 

  • Taskjelle T, Hudson SR, Granskog MA, Nicolaus M, Lei R, Gerland S, Stamnes JJ, Hamre B (2016) Spectral albedo and transmittance of thin young Arctic Sea ice. J Geophys Res 121:540–553. https://doi.org/10.1002/2015JC011254

    Article  Google Scholar 

  • Tassan S, Ferrari G (2002) A sensitivity analysis of the ‘Transmittance–Reflectance’ method for measuring light absorption by aquatic particles. J Plankton Res 24:757–774

    Article  Google Scholar 

  • tom Dieck I (1989) Vergleichende Untersuchungen zur Ökophysiologie und Kreuzbarkeit innerhalb der digitaten Sektion der Gattung Laminaria. PhD thesis, University of Hamburg, Hamburg, Germany

    Google Scholar 

  • tom Dieck I (1991) Circannual growth rhythm and photoperiodic sorus induction in the kelp Laminaria setchellii (Phaeophyta). J Phycol 27:341–350

    Article  Google Scholar 

  • Torgersen T (2001) Visual predation by the euphausiid Meganyctiphanes norvegica. Mar Ecol Prog Ser 209:295–299

    Article  Google Scholar 

  • Urbanski JA, Stempniewicz L, Weslawski JM, Draganska-Deja K, Wochna A, Goc M, Iliszko L (2017) Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacial bays. Sci Rep 7:43999. https://doi.org/10.1038/srep43999

    Article  PubMed  PubMed Central  Google Scholar 

  • Vader A, Marquardt M, Meshram AR, Gabrielsen TM (2015) Key Arctic phototrophs are widespread in the polar night. Polar Biol 38:13–21

    Article  Google Scholar 

  • van de Poll WH, Hanelt D, Hoyer K, Buma AGJ, Breeman AM (2002) Ultraviolet-B induced cyclobutane pyrimidine dimer formation and repair in Arctic marine macrophytes. Photochem Photobiol 76:493–501

    Article  PubMed  Google Scholar 

  • Varpe Ø (2012) Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles. J Plankton Res 34:267–276

    Article  Google Scholar 

  • Varpe Ø, Daase M, Kristiansen T (2015) A fish-eye view on the new Arctic lightscape. ICES J Mar Sci 72:2532–2538

    Article  Google Scholar 

  • Vincent WF, Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environ Rev 1:1–12

    Article  CAS  Google Scholar 

  • Volent Z, Johnsen G, Sigernes F (2007) Kelp forest mapping by use of airborne hyperspectral imager. J Appl Remote Sens 1:011503. https://doi.org/10.1117/1.2822611

    Article  Google Scholar 

  • Wallace MI, Cottier FR, Berge J, Tarling GA, Griffiths C, Brierley AS (2010) Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: an insight into the influence of sea ice cover on zooplankton behavior. Limnol Oceanogr 55:831–845

    Article  Google Scholar 

  • Wängberg S-Å, Andreasson KI, Gustavson K, Reinthaler T, Henriksen P (2008) UV-B effects on microplankton communities in Kongsfjord, Svalbard–A mesocosm experiment. J Exp Mar Biol Ecol 365:156–163

    Article  Google Scholar 

  • Wiencke C, Hop H (2016) Ecosystem Kongsfjorden: new views after more than a decade of research. Polar Biol 39:1679–1687

    Article  Google Scholar 

  • Wiencke C, Gómez I, Pakker H, Flores-Moya A, Altamirano M, Hanelt D, Bischof K, Figueroa FL (2000) Impact of UV-radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Mar Ecol Prog Ser 197:217–229

    Article  Google Scholar 

  • Wiencke C, Clayton M, Schoenwaelder M (2004) Sensitivity and acclimation to UV radiation of zoospores from five species of Laminariales from the Arctic. Mar Biol 145:31–39

    Article  Google Scholar 

  • Wiencke C, Roleda MY, Gruber A, Clayton MN, Bischof K (2006) Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol 94:455–463

    Article  Google Scholar 

  • Winther J-G, Edvardsen K, Gerland S, Hamre B (2004) Surface reflectance of sea ice and under-ice irradiance in Kongsfjorden, Svalbard. Polar Res 23:115–118

    Article  Google Scholar 

  • Woelfel J, Schumann R, Peine F, Flohr A, Kruss A, Tegowski J, Blondel P, Wiencke C, Karsten U (2010) Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line. Polar Biol 33:1239–1253

    Article  Google Scholar 

  • Woelfel J, Eggert A, Karsten U (2014) Marginal impacts of rising temperature on Arctic benthic microalgae production based on in situ measurements and modelled estimates. Mar Ecol Prog Ser 501:25–40

    Article  CAS  Google Scholar 

  • Zajaczkowski MJ, Legezynska J (2001) Estimation of zooplankton mortality caused by an Arctic glacier outflow. Oceanologia 43:341–351

    Google Scholar 

Download references

Acknowledgement

We thank organizers of the Kongsfjorden Ecosystem Workshop (Hamn i Senja, March 2014) for the initiation of this review study. For AP, PK, JM, SH, SS and MAG, this work was partly supported by the Polish–Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the framework of Project Contract Pol-Nor/197511/40/2013, CDOM-HEAT; and for AP, SH and MAG by the Research Council of Norway through the STASIS project (221961/F20). UK gratefully acknowledges financial support through the project KA 899/15-1/2/3 in the framework of the DFG (Deutsche Forschungsgemeinschaft) Priority Programme 1158 “Antarctic Research”. SS was supported by the Norwegian Financial Mechanism, project ALKEKONGE, PNRF-234-AI-1/07. We thank Oddveig Øien Ørvoll and Anders Skoglund at the Mapping section of the Norwegian Polar Institute for preparing the map of Kongsfjorden (Fig. 5.1). We thank Colin Griffiths for Kongsfjorden mooring work, funded by UK Natural Environment Research Council and the Research Council of Norway Projects Circa (214271) and Cleopatra (178766). We also thank three anonymous reviewers for constructive feedback that helped to improve this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavlov, A.K. et al. (2019). The Underwater Light Climate in Kongsfjorden and Its Ecological Implications. In: Hop, H., Wiencke, C. (eds) The Ecosystem of Kongsfjorden, Svalbard. Advances in Polar Ecology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-46425-1_5

Download citation

Publish with us

Policies and ethics