Skip to main content

Cardiac Function (Cardiac Output and Its Determinants)

  • Chapter
  • First Online:
Monitoring Tissue Perfusion in Shock

Abstract

The cardiovascular system is designed to supply the body to the needs of metabolic demand. When cardiac output (CO) falls short or systemic metabolic demand is increased, the patient is in jeopardy. CO is greatly determined by the amount of venous return (VR) delivered to the right ventricle (RV). VR is dependent on the balance between unstressed and stressed volume, which portends the driving pressure for VR. Stressed volume can be calculated by measurement of mean systemic filling pressure (P ms). There are multiple (clinical and experimental) modalities to measure P ms. The net driving pressure estimated as the upstream pressure (P ms) relative to right atrial pressure (P ra), often deferred the driving pressure for venous return (P vr). Resistance to flow, which counts for both arterial vascular resistance and resistance to venous return (RVR), is calculated by various methods depending on the vascular circuit and flow characteristics each circuit creates. In conjunction to the systemic circulation, atria serve as a reservoir and conduit, where the right atrium particularly plays an important role in modulating venous return. Owing to this reservoir and conduit function, atrial contraction plays a lesser role in delivery of blood to the chambers. The ventricles, thanks to the Frank-Starling effect, increase contraction when supplied with this preload. A complex interplay of inotropy, lusitropy, and chronotropy comprising both systolic and diastolic function enable the heart to optimally transfer the blood it receives, thereby assisted by the concepts of ventricular interdependence, ventriculo-arterial coupling, the role of the pericardium, and coronary blood supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz AM, Rolett EL. Heart failure: when form fails to follow function. Eur Heart J. 2016;37:449–54.

    Article  Google Scholar 

  2. Funk DJ, Jacobsohn E, Kumar A. The role of venous return in critical illness and shock–part I: physiology. Crit Care Med. 2013;41:255–62.

    Article  PubMed  Google Scholar 

  3. Gelman S. Venous function and central venous pressure—a physiologic story. Anesthesiology. 2008;108:735–48.

    Article  PubMed  Google Scholar 

  4. Bressack MA, Raffin TA. Importance of venous return, venous resistance and mean circulatory pressure in the physiology and management of shock. Chest. 1987;92:906–12.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson RM, Fritz JM, O’Hare JE. The mechanical nature of the heart as a pump. Am Heart J. 1967;73(1):92–105.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson RM. The gross physiology of the cardiovascular system. Tucson, AZ: Racquet Press; 1993.

    Google Scholar 

  7. Guyton AC, Abernathy B, Langston JB, Kaufmann BN, Fairchild HM. Relative importance of venous and arterial resistances in controlling venous return and cardiac output. Am J Physiol. 1954;179(2):261–7.

    PubMed  CAS  Google Scholar 

  8. Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 1959;196(5):1008–14.

    PubMed  CAS  Google Scholar 

  9. Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol. 1955;180(3):463–8.

    PubMed  CAS  Google Scholar 

  10. Guyton AC, Lindsey AW, Abernathy B, Richardson T. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189(3):609–15.

    PubMed  CAS  Google Scholar 

  11. Beard DA, Feigl EO. Understanding Guyton’s venous return curves. Am J Physiol Heart Circ Physiol. 2011;301:629–33.

    Article  CAS  Google Scholar 

  12. Grodins FS, Stuart WH, Veenstra RL. Performance characteristics of the right heart bypass preparation. Am J Physiol. 1960;198:552–60.

    PubMed  CAS  Google Scholar 

  13. Starling EH. The Linacre Lecture on the Law of the Heart. London: Longmans, Green & Company; 1918.

    Google Scholar 

  14. Rothe CF. Mean circulatory filling pressure: its meaning and measurement. J Appl Physiol. 1993;74:499–509.

    Article  CAS  PubMed  Google Scholar 

  15. Pinsky MR. Mean systemic pressure monitoring. In: Cannesson M, Pearse R, editors. Perioperative hemodynamic monitoring and goal directed therapy. Cambridge: Cambridge University Press; 2014. p. 157–62.

    Chapter  Google Scholar 

  16. Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol. 1984;56:765–71.

    Article  CAS  PubMed  Google Scholar 

  17. Versprille A, Jansen JR. Mean systemic filling pressure as a characteristic for venous return. Pflugers Arch. 1985;405:226–33.

    Article  CAS  PubMed  Google Scholar 

  18. Maas JJ, Pinsky MR, Geerts BF, de Wilde RB, Jansen JR. Estimation of mean systemic filling pressure in postoperative cardiac surgery patients with three methods. Intensive Care Med. 2012;38:1452–60.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maas JJ, Geert BF, Van den Berg PC, Pinsky MR, Jansen JRC. Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients. Crit Care Med. 2009;37:912–8.

    Article  PubMed  Google Scholar 

  20. Schipke JD, Heusch G, Sanii AP, Gams E, Winter J. Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Heart Circ Physiol. 2003;285:2510–5.

    Article  Google Scholar 

  21. Repessé X, Charron C, Fink J, Beauchet A, Deleu F, Slama M, Belliard G, Vieillard-Baron A. Value and determinants of the mean systemic filling pressure in critically ill patients. Am J Physiol Heart Circ Physiol. 2015;309:1003–7.

    Article  CAS  Google Scholar 

  22. Parkin WG, Wright CA. Three dimensional closed loop control of the human circulation. J Clin Monit Comput. 1991;8:35–42.

    Article  CAS  Google Scholar 

  23. Parkin WG, Wright CA, Bellomo R, Boyce N. Use of a mean systemic filling pressure analogue during the closed-loop control of fluid replacement in continuous hemodiafiltration. J Crit Care. 1994;9:124–33.

    Article  CAS  PubMed  Google Scholar 

  24. Parkin WG. Volume state control—a new approach. Crit Care Resusc. 1999;1:311–21.

    PubMed  CAS  Google Scholar 

  25. Parkin WG, Leaning MS. Therapeutic control of the circulation. J Clin Monit Comput. 2008;22:391–400.

    Article  PubMed  Google Scholar 

  26. Pellegrino VA, Mudaliar Y, Gopalakrishnan M, Hortons MD, Killick CJ, Parkin WG, Playford HR, Raper RF. Computer based haemodynamic guidance system is effective and safe in management of postoperative cardiac surgery patients. Anaesth Intensive Care. 2011;39:191–201.

    PubMed  CAS  Google Scholar 

  27. Cecconi M, Hollmann DA, Geisen M, Ebm C, Fletcher N, Grounds RM, Rhodes A. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med. 2013;39:1299–305.

    Article  PubMed  Google Scholar 

  28. Opie LH, Bers DM. Mechanisms of cardiac contraction and relaxation. In: Libby P, Bonow RO, Mann DL, Zipes DP, editors. Heart disease: a textbook of cardiovascular medicine. 10th ed. Philadelphia: WB Saunders; 2015. p. 429–53.

    Google Scholar 

  29. Pagel PS, Kehl F, Gare M, et al. Mechanical function of the left atrium: new insights based on analysis of pressure-volume relations and Doppler echocardiography. Anesthesiology. 2003;98:975.

    Article  PubMed  Google Scholar 

  30. Mitchell JH, Gilmore JP, Sarnoff SJ. The transport function of the atrium. Factors influencing the relation between mean left atrial pressure and left ventricular end-diastolic pressure. Am J Cardiol. 1962;9:237.

    Article  CAS  PubMed  Google Scholar 

  31. Mitchell JH, Gupta DN, Payne RM. Influence of atrial systole on effective ventricular stroke volume. Circ Res. 1965;17:11.

    Article  CAS  PubMed  Google Scholar 

  32. Grandi E, Pandit SV, Voigt N, et al. Human atrial action potential and Ca2+ model: Sinus rhythm and chronic atrial fibrillation. Circ Res. 2011;109:1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Von Anrep G. On the part played by the suprarenals in the normal vascular reactions of the body. Am J Physiol. 1912;45:307–17.

    Article  Google Scholar 

  34. Haddad, et al. Right ventricular function in cardiovascular disease, part I. Anatomy, physiology, aging and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.

    Article  PubMed  Google Scholar 

  35. Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92(Suppl 1):i2–i13.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Starr I, Jeffers WA, Meade RH. The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease. Am Heart J. 1943;26:291–301.

    Article  Google Scholar 

  37. Guyton AC, Lindsey AW, Gilluly JJ. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ Res. 1954;4:326–32.

    Article  Google Scholar 

  38. Suga H, Sugawa K. Instantaneous pressure–volume relationships and their ratio in the excised supported canine left ventricle. Circ Res. 1974;35:117.

    Article  CAS  PubMed  Google Scholar 

  39. Pinsky MR. Circulation and circulatory support in the critically ill. In: Warrell DA, Cox TM, Firth JD, editors. Oxford textbook of medicine. 5th ed. Oxford: Oxford University Press; 2015.

    Google Scholar 

  40. Little WC. Diastolic dysfunction beyond distensibility: adverse effects of ventricular dilatation. Circulation. 2005;112:2888.

    PubMed  Google Scholar 

  41. Rain S, Handoko ML, Trip P, Gan CT, Westerhof N, Stienen GJ, Paulus WJ, Ottenheijm CA, Marcus JT, Dorfmüller P, Guignabert C, Humbert M, Macdonald P, Dos Remedios C, Postmus PE, Saripalli C, Hidalgo CG, Granzier HL, Vonk-Noordegraaf A, van der Velden J, de Man FS. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation. 2013;128:2016–25.

    Article  CAS  PubMed  Google Scholar 

  42. Damiano RJ Jr, La Follette P Jr, Cox JL, Lowe JE, Santamore WP. Significant left ventricular contribution to right ventricular systolic function. Am J Physiol. 1991;261:H1514–24.

    PubMed  Google Scholar 

  43. Barthélémy R, Gayat E, Mebazaa A. Pathophysiology and clinical assessment of the cardiovascular system (including pulmonary artery catheter). In: Tubaro M, Vranckxx P, Price S, Vrints C, editors. The ESC textbook of intensive and acute cardiovascular care. 2nd ed. Oxford: Oxford University Press; 2015. p. 101–10.

    Google Scholar 

  44. Guarracino F, Baldassarri R, Pinsky MR. Ventriculo-arterial decoupling in acutely altered hemodynamic states. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. Heidelberg: Springer; 2013. p. 225–36.

    Google Scholar 

  45. Feigl EO. Coronary physiology. Physiol Rev. 1983;63:1.

    Article  CAS  PubMed  Google Scholar 

  46. Johnson D. The pericardium. In: Standring S, et al., editors. Gray’s anatomy. New York: Elsevier Churchill Livingstone; 2005. p. 995–6.

    Google Scholar 

  47. Jöbsis PD, Ashikaga H, Wen H, et al. The visceral pericardium: macromolecular structure and contribution to passive mechanical properties of the left ventricle. Am J Physiol. 2007;293:H3379.

    Google Scholar 

  48. Eeffe O’Rourke RA, Dell’Italia LJ. Diagnosis and management of right ventricular myocardial infarction. Curr Probl Cardiol. 2004;29:6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loek P. B. Meijs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meijs, L.P.B., Bindels, A.J.G.H., Bakker, J., Pinsky, M.R. (2018). Cardiac Function (Cardiac Output and Its Determinants). In: Pinto Lima, A., Silva, E. (eds) Monitoring Tissue Perfusion in Shock. Springer, Cham. https://doi.org/10.1007/978-3-319-43130-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43130-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43128-4

  • Online ISBN: 978-3-319-43130-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics