Skip to main content

Guyton at the Bedside

  • Chapter
  • First Online:
Monitoring Tissue Perfusion in Shock

Abstract

This chapter describes the classic model of the circulation developed by Arthur Guyton and his team. The model envisions the circulation comprised of discrete components. The cardiac output is largely determined by the interactions of the venous return and the cardiac performance. The venous return is a function of the gradient between the mean systemic filling pressure and the right atrial pressure. The distribution of blood flow is largely controlled by autoregulation, thus matching oxygen demand and subsequently generating the venous return. Thus, cardiac output is a function of oxygen demand when cardiac function is not compromised. Caring for critically ill patient requires an understanding of Guytonian hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magder S. Volume and its relationship to cardiac output and venous return. Crit Care. 2016;20:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cowley AW Jr, Guyton AC. Heart rate as a determinant of cardiac output in dogs with arteriovenous fistula. Am J Cardiol. 1971;28:321–5.

    Article  PubMed  Google Scholar 

  3. Prather JW, Taylor AE, Guyton AC. Effect of blood volume, mean circulatory pressure, and stress relaxation on cardiac output. Am J Phys. 1969;216:467–72.

    CAS  Google Scholar 

  4. Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Phys. 1955;180:463–8.

    CAS  Google Scholar 

  5. Magder S. Point: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol (1985). 2006;101:1523–5.

    Article  CAS  Google Scholar 

  6. Berlin DA, Bakker J. Understanding venous return. Intensive Care Med. 2014;40:1564–6.

    Article  PubMed  Google Scholar 

  7. Guyton AC, Jones CE, Coleman TG. Circulatory physiology; cardiac output and its regulation. Philadelphia: Saunders; 1973.

    Google Scholar 

  8. Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med. 1998;26:1061–4.

    Article  CAS  PubMed  Google Scholar 

  9. Berlin DA, Bakker J. Starling curves and central venous pressure. Crit Care. 2015;19:55.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marik PE. Iatrogenic salt water drowning and the hazards of a high central venous pressure. Ann Intensive Care. 2014;4:21.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41:1774–81.

    Article  PubMed  Google Scholar 

  12. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  13. Guyton AC, Lindsey AW, Abernathy B, Richardson T. Venous return at various right atrial pressures and the normal venous return curve. Am J Phys. 1957;189:609–15.

    CAS  Google Scholar 

  14. Permutt S, Riley S. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol. 1963;18:924–32.

    Article  CAS  PubMed  Google Scholar 

  15. Sagrista-Sauleda J, Angel J, Sambola A, Permanyer-Miralda G. Hemodynamic effects of volume expansion in patients with cardiac tamponade. Circulation. 2008;117:1545–9.

    Article  PubMed  Google Scholar 

  16. Sagrista-Sauleda J, Angel J, Sambola A, Alguersuari J, Permanyer-Miralda G, Soler-Soler J. Low-pressure cardiac tamponade: clinical and hemodynamic profile. Circulation. 2006;114:945–52.

    Article  PubMed  Google Scholar 

  17. Krogh A. The regulation of the supply of blood to the right heart. Skan Arch Physiol. 1912;27:227–48.

    Article  Google Scholar 

  18. De Jager S. Experiments and considerations on haemodynamics. J Physiol. 1886;7:130–215.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tigerstedt C. Zur Kenntnis der von dem linken Herzen herausgetriebenen Blutmenge in ihrer Abhängigkeit von verschiedenen Variabein. Skand Arch Physiol. 1909;22:115–90.

    Article  Google Scholar 

  20. Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, Monnet X. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;40:3146–53.

    Article  CAS  PubMed  Google Scholar 

  21. Cecconi M, Aya HD, Geisen M, Ebm C, Fletcher N, Grounds RM, Rhodes A. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med. 2013;39:1299–305.

    Article  PubMed  Google Scholar 

  22. Guyton AC, Lindsey AW, Abernathy B, Langston JB. Mechanism of the increased venous return and cardiac output caused by epinephrine. Am J Phys. 1958;192:126–30.

    CAS  Google Scholar 

  23. Cohn JN, Luria MH. Studies in clinical shock and hypotension. II. Hemodynamic effects of norepinephrine and angiotensin. J Clin Invest. 1965;44:1494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van den Meiracker AH, van den Berg B, de Herder W, Bakker J. Extreme blood pressure oscillations in a patient with a MEN-2a syndrome. J Clin Endocrinol Metab. 2014;99:701–2.

    Article  CAS  PubMed  Google Scholar 

  25. Notarius CF, Levy RD, Tully A, Fitchett D, Magder S. Cardiac versus noncardiac limits to exercise after heart transplantation. Am Heart J. 1998;135:339–48.

    Article  CAS  PubMed  Google Scholar 

  26. Vellinga NA, Ince C, Boerma EC. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol. 2013;13:17.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, Payen D. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17:R278.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shen T, Baker K. Venous return and clinical hemodynamics: how the body works during acute hemorrhage. Adv Physiol Educ. 2015;39:267–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bakker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berlin, D., Moitra, V., Bakker, J. (2018). Guyton at the Bedside. In: Pinto Lima, A., Silva, E. (eds) Monitoring Tissue Perfusion in Shock. Springer, Cham. https://doi.org/10.1007/978-3-319-43130-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43130-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43128-4

  • Online ISBN: 978-3-319-43130-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics