Skip to main content

Oxygen Transport and Tissue Utilization

  • Chapter
  • First Online:
  • 1529 Accesses

Abstract

Tissue oxygenation and regulation is a critical feature for any organ function. The maintenance of an adequate supply of oxygen is required to maintain normal cellular function. This requires the coordinated action of the three major systems involved in oxygen transport: the cardiovascular system, the respiratory system, and the blood. The cardiovascular and respiratory systems are designed to carry the oxygen that is present in the atmosphere down to the mitochondria. The majority of oxygen is transported to the tissues bound to hemoglobin, and its equilibrium is a function of arterial oxygen content, hemoglobin level, arterial oxygen partial pressure, arterial oxygen saturation, and cardiac output. The interplay among these factors determines the transport of oxygen to the tissues defining its convection and diffusion properties. The resuscitation of patients with hemodynamic dysfunction is more than normalizing hemodynamics as an approach like that might prove to be inadequate, but also the therapies might have inherent negative effects. Therefore, the management of a patient in shock with the theoretical concepts of the main drivers for transport of oxygen and the subsequent delivery of oxygen to the tissues might lead to a structured approach that might benefit the patient more than using static clinical endpoints for these variables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wilson DF, Erecinska M, Drown C, Silver IA. The oxygen dependence of cellular energy metabolism. Arch Biochem Biophys. 1979;195:485–93.

    Article  CAS  PubMed  Google Scholar 

  2. Wilson DF, Owen CS, Erecinska M. Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: a mathematical model. Arch Biochem Biophys. 1979;195:494–504.

    Article  CAS  PubMed  Google Scholar 

  3. Barcroft J, Hill AV. The nature of oxyhaemoglobin, with a note on its molecular weight. J Physiol. 1910;39:411–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gomez-Cambronero J. The oxygen dissociation curve of hemoglobin: bridging the gap between biochemistry and physiology. J Chem Educ. 2001;78:757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davis MJ, Hill MA, Kuo L. Local regulation of microvascular perfusion. Compr Physiol. 2011;Suppl 9: Handbook of physiology, the cardiovascular system, microcirculation. https://doi.org/10.1002/cphy.cp020406.

  6. Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem. 1988;263:2712–8.

    PubMed  CAS  Google Scholar 

  7. Schlayer C. The influence of oxygen tension on the respiration of pneumococci (type I). J Bacteriol. 1936;31:181–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Schumacker PT, Chandel N, Agusti AG. Oxygen conformance of cellular respiration in hepatocytes. Am J Phys. 1993;265:L395–402.

    CAS  Google Scholar 

  9. Pittman RN. Regulation of tissue oxygenation. In: Neil GD and Granger JP (eds). Colloquium series on integrated systems physiology: from molecule to function to disease. Morgan & Claypool Life Sciences, San Rafael (CA), 2011. p. 2009–11.

    Google Scholar 

  10. Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101:509–15.

    Article  CAS  PubMed  Google Scholar 

  11. Grundler W, Weil MH, Rackow EC. Arteriovenous carbon dioxide and ph gradients during cardiac arrest. Circulation. 1986;74:1071–4.

    Article  CAS  PubMed  Google Scholar 

  12. Vander Linden P, Bakker J, Schmartz D, Vincent JL. Arteriovenous PCO2 differences reflects tissue hypoxia during hemorrhagic shock in dogs. Circ Shock. 1991;34:87.

    Google Scholar 

  13. Ellis CG, Potter RF, Groom AC. The Krogh cylinder geometry is not appropriate for modelling O2 transport in contracted skeletal muscle. Adv Exp Med Biol. 1983;159:253–68.

    Article  CAS  PubMed  Google Scholar 

  14. Orbegozo Cortes D, Puflea F, Donadello K, Taccone FS, Gottin L, Creteur J, Vincent JL, De Backer D. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc Res. 2015;98:23–8.

    Article  CAS  PubMed  Google Scholar 

  15. Reinhart K, Bloos F, Konig F, Bredle D, Hannemann L. Reversible decrease of oxygen consumption by hyperoxia. Chest. 1991;99:690–4.

    Article  CAS  PubMed  Google Scholar 

  16. Cornet AD, Kooter AJ, Peters MJ, Smulders YM. Supplemental oxygen therapy in medical emergencies: more harm than benefit? Arch Intern Med. 2012;172:289–90.

    Article  PubMed  Google Scholar 

  17. Iscoe S, Beasley R, Fisher JA. Supplementary oxygen for nonhypoxemic patients: O2 much of a good thing? Crit Care. 2011;15:305.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Eastwood GM, Peck L, Young H, Suzuki S, Garcia M, Bellomo R. Intensive care clinicians’ opinion of conservative oxygen therapy (SpO2 90-92%) for mechanically ventilated patients. Aust Crit Care. 2014;27:120–5.

    Article  PubMed  Google Scholar 

  19. Hebert PC, Wells G, Marshall J, Martin C, Tweeddale M, Pagliarello G, Blajchman M. Transfusion requirements in critical care. A pilot study. Canadian Critical Care Trials Group. JAMA. 1995;273:1439–44.

    Article  CAS  PubMed  Google Scholar 

  20. Carson JL, Duff A, Berlin JA, Lawrence VA, Poses RM, Huber EC, O’Hara DA, Noveck H, Strom BL. Perioperative blood transfusion and postoperative mortality. JAMA. 1998;279:199–205.

    Article  CAS  PubMed  Google Scholar 

  21. Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, Tweeddale M, Schweitzer I, Yetisir E. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340:409–17.

    Article  CAS  PubMed  Google Scholar 

  22. Yuruk K, Almac E, Bezemer R, Goedhart P, de Mol B, Ince C. Blood transfusions recruit the microcirculation during cardiac surgery. Transfusion (Paris). 2011;51:961–7.

    Article  Google Scholar 

  23. Donati A, Damiani E, Luchetti M, Domizi R, Scorcella C, Carsetti A, Gabbanelli V, Carletti P, Bencivenga R, Vink H, Adrario E, Piagnerelli M, Gabrielli A, Pelaia P, Ince C. Microcirculatory effects of the transfusion of leukodepleted or non-leukodepleted red blood cells in patients with sepsis: a pilot study. Crit Care. 2014;18:R33.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zafrani L, Ergin B, Kapucu A, Ince C. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats. Crit Care. 2016;20:406.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16:1117–20.

    Article  CAS  PubMed  Google Scholar 

  26. Tuchschmidt J, Fried J, Astiz M, Rackow E. Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest. 1992;102:216–20.

    Article  CAS  PubMed  Google Scholar 

  27. Astiz ME, Rackow EC, Falk JL, Kaufman BS, Weil MH. Oxygen delivery and consumption in patients with hyperdynamic septic shock. Crit Care Med. 1987;15:26–8.

    Article  CAS  PubMed  Google Scholar 

  28. Gilbert EM, Haupt MT, Mandanas RY, Huaringa AJ, Carlson RW. The effect of fluid loading, blood transfusion, and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis. 1986;134:873–8.

    Article  CAS  PubMed  Google Scholar 

  29. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med. 1995;333:1025–32.

    Article  CAS  PubMed  Google Scholar 

  30. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22.

    Article  CAS  PubMed  Google Scholar 

  31. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  32. Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.

    Article  CAS  PubMed  Google Scholar 

  33. Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.

    Article  CAS  PubMed  Google Scholar 

  34. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, Coats TJ, Singer M, Young JD, Rowan KM. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–11.

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen HB, Jaehne AK, Jayaprakash N, Semler MW, Hegab S, Yataco AC, Tatem G, Salem D, Moore S, Boka K, Gill JK, Gardner-Gray J, Pflaum J, Domecq JP, Hurst G, Belsky JB, Fowkes R, Elkin RB, Simpson SQ, Falk JL, Singer DJ, Rivers EP. Early goal-directed therapy in severe sepsis and septic shock: insights and comparisons to ProCESS, ProMISe, and ARISE. Crit Care. 2016;20:160.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA. 1993;270:2699–707.

    Article  CAS  PubMed  Google Scholar 

  37. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, Willemsen SP, Bakker J. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.

    Article  PubMed  Google Scholar 

  38. Kavanagh BP, Meyer LJ. Normalizing physiological variables in acute illness: five reasons for caution. Intensive Care Med. 2005;31:1161–7.

    Article  PubMed  Google Scholar 

  39. Sakr Y, Rubatto Birri PN, Kotfis K, Nanchal R, Shah B, Kluge S, Schroeder ME, Marshall JC, Vincent JL, Intensive Care Over Nations Investigators. Higher fluid balance increases the risk of death from sepsis: results from a large international audit. Crit Care Med. 2017;45:386–94.

    Article  PubMed  Google Scholar 

  40. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.

    Article  Google Scholar 

  41. Vellinga NA, Ince C, Boerma EC. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol. 2013;13:17.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, Payen D. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17:R278.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77.

    Article  PubMed  Google Scholar 

  44. van Genderen ME, Engels N, van der Valk RJ, Lima A, Klijn E, Bakker J, van Bommel J. Early peripheral perfusion-guided fluid therapy in patients with septic shock. Am J Respir Crit Care Med. 2015;191:477–80.

    Article  PubMed  Google Scholar 

  45. Dubin A, Pozo MO, Casabella CA, Palizas F Jr, Murias G, Moseinco MC, Kanoore Edul VS, Palizas F, Estenssoro E, Ince C. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tanaka S, Escudier E, Hamada S, Harrois A, Leblanc PE, Vicaut E, Duranteau J. Effect of RBC transfusion on sublingual microcirculation in hemorrhagic shock patients: a pilot study. Crit Care Med. 2016;45(2):e154–60.

    Article  Google Scholar 

  47. Hernandez G, Bruhn A, Luengo C, Regueira T, Kattan E, Fuentealba A, Florez J, Castro R, Aquevedo A, Pairumani R, McNab P, Ince C. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med. 2013;39:1435–43.

    Article  CAS  PubMed  Google Scholar 

  48. Prys-Picard CO, Shah SK, Williams BD, Cardenas V Jr, Sharma G. Outcomes of patients on multiple vasoactive drugs for shock. J Intensive Care Med. 2013;28:237–40.

    Article  PubMed  Google Scholar 

  49. Dunser MW, Ruokonen E, Pettila V, Ulmer H, Torgersen C, Schmittinger CA, Jakob S, Takala J. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care. 2009;13:R181.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dunser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24:293–316.

    Article  PubMed  Google Scholar 

  51. Bihari D, Smithies M, Gimson A, Tinker J. The effects of vasodilation with prostacyclin on oxygen delivery and uptake in critically ill patients. N Engl J Med. 1987;317:397–403.

    Article  CAS  PubMed  Google Scholar 

  52. Lima A, van Genderen ME, van Bommel J, Klijn E, Jansem T, Bakker J. Nitroglycerin reverts clinical manifestations of poor peripheral perfusion in patients with circulatory shock. Crit Care. 2014;18:R126.

    Article  PubMed  PubMed Central  Google Scholar 

  53. den Uil CA, Lagrand WK, Spronk PE, van der Ent M, Jewbali LS, Brugts JJ, Ince C, Simoons ML. Low-dose nitroglycerin improves microcirculation in hospitalized patients with acute heart failure. Eur J Heart Fail. 2009;11:386–90.

    Article  CAS  Google Scholar 

  54. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 2002;360:1395–6.

    Article  PubMed  Google Scholar 

  55. Preiser JC, De Backer D, Vincent JL. Nitroglycerin for septic shock. Lancet. 2003;361:880. (author reply 880).

    Article  PubMed  Google Scholar 

  56. Lamontagne F, Meade MO, Hebert PC, Asfar P, Lauzier F, Seely AJ, Day AG, Mehta S, Muscedere J, Bagshaw SM, Ferguson ND, Cook DJ, Kanji S, Turgeon AF, Herridge MS, Subramanian S, Lacroix J, Adhikari NK, Scales DC, Fox-Robichaud A, Skrobik Y, Whitlock RP, Green RS, Koo KK, Tanguay T, Magder S, Heyland DK, Canadian Critical Care Trials Group. Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensive Care Med. 2016;42:542–50.

    Article  CAS  PubMed  Google Scholar 

  57. Duenser MW, Takala J, Brunauer A, Bakker J. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care. 2013;17(5):326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bakker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro, R., Hernández, G., Bakker, J. (2018). Oxygen Transport and Tissue Utilization. In: Pinto Lima, A., Silva, E. (eds) Monitoring Tissue Perfusion in Shock. Springer, Cham. https://doi.org/10.1007/978-3-319-43130-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43130-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43128-4

  • Online ISBN: 978-3-319-43130-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics