Skip to main content

Technologies for Cryoprotectant-Free Vitrification of Human Spermatozoa: Asepticity as a Criterion for Effectiveness

  • Chapter
  • First Online:
In Vitro Fertilization

Abstract

This review describes the 120-year history of technology for cryoprotectant-free cryopreservation of human spermatozoa by direct plunging into liquid nitrogen (vitrification). It explains why cryoprotectant-free vitrification of some human ejaculate samples is better than conventional freezing and vitrification with the presence of cryoprotectants. Special attention is given to the extremely high viability of viruses, bacteria, and mycoplasmas after cryoprotectant-free cryopreservation in culture medium and even in distilled water. This increases the potential risk of disease transmission through liquid nitrogen. The concept of asepticity is concretized as an obvious parameter for any medical assisted reproduction technology that includes cooling of cells in liquid nitrogen. The roles of nonpermeating compounds in media for cytoprotectant-free vitrification—carbohydrates, proteins, lipoproteins, antioxidants—are described. This review summarizes relevant data regarding two groups of different current technologies for cryoprotectant-free vitrification of human spermatozoa: those involving direct contact of spermatozoa with liquid nitrogen and those involving full isolation of these cells from liquid nitrogen (aseptic technologies).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkes AS. Preservation of human spermatozoa at low temperatures. Brit Med J. 1945;2:212–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jahnel F. Ueber die Widerstandsfehigkeit von menschlichen Spermatozoonen gegenueber starker Kaelte. Klin Wochenschr. 1938;17:1273–4.

    Article  CAS  Google Scholar 

  3. Hoagland H, Pincus G. Revival of mammalian sperm after immersion in liquid nitrogen. J Gener Physiol. 1942;25:337–44.

    Article  CAS  Google Scholar 

  4. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164:666.

    Article  CAS  PubMed  Google Scholar 

  5. Nawroth F, Isachenko V, Dessole S, Rahimi G, Farina M, Vargiu N, Mallmann P, Dattena M, Capobianco G, Peters D, Orth I, Isachenko E. Vitrification of human spermatozoa without cryoprotectants. Cryo Letters. 2002;23:93–102.

    CAS  PubMed  Google Scholar 

  6. Talbot P, Chacon RS. A triple-stain technique for evaluating normal acrosome reactions of human sperm. J Exp Zool. 1981;215:201–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod. 1999;14:3077–9.

    Article  CAS  PubMed  Google Scholar 

  8. Gao DY, Liu C, McGann LE, Watson PF, Kleinhans FW, Mazur P, Critser ES, Critser JK. Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum Reprod. 1995;10:1109–22.

    Article  CAS  PubMed  Google Scholar 

  9. Gao D, Mazur P, Critser J. Fundamental cryobiology of mammalian spermatozoa. In: Karow AM, Critser JK, editors. Reproductive tissue banking. London: Academic; 1997. p. 263–328.

    Chapter  Google Scholar 

  10. Watson PF. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their postthawing function. Reprod Fertil Dev. 1995;7:871–91.

    Article  CAS  PubMed  Google Scholar 

  11. Critser JK, Huse-Benda AR, Aaker DV, Arnenson BW, Ball GD. Cryopreservation of human spermatozoa. 1. Effects of holding procedure and seeding on motility, fertilizability, and acrosome reaction. Fertil Steril. 1987a;47:656–63.

    Article  CAS  PubMed  Google Scholar 

  12. Critser JK, Arnenson BW, Aaker DV, Huse-Benda AR, Ball GD. Cryopreservation of human spermatozoa. 2. Post-thaw chronology of motility and zona-free hamster ova penetration. Fertil Steril. 1987b;47:980–4.

    Article  CAS  PubMed  Google Scholar 

  13. Keel BA, Webster BW, Roberts DK. Effects of cryopreservation on the motility characteristics of human spermatozoa. J Reprod Fertil. 1987;81:213–20.

    Article  CAS  PubMed  Google Scholar 

  14. Mossad H, Morshedi M, Torner JP, Oehninger S. Impact of cryopreservation on spermatozoa from infertile men—implication for artificial insemination. Arch Androl. 1994;33:51–7.

    Article  CAS  PubMed  Google Scholar 

  15. Aitken RJ, Clarkson JS, Hargreave TB, Irvine DS, Wu FC. Analysis of the relationship between defective sperm function and the generation of reactive oxygen species in cases of oligospermia. J Androl. 1989;10:214–20.

    Article  CAS  PubMed  Google Scholar 

  16. Alvarez JG, Storey BT. Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation. J Androl. 1992;13:232–41.

    CAS  PubMed  Google Scholar 

  17. O’Connell M, McClure N, Lewis SEM. The effect of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod. 2002;17:704–9.

    Article  PubMed  Google Scholar 

  18. Alvarez JG, Storey BT. Evidence that membrane stress contributes more than lipid peroxidation to sublethal cryodamage in cryopreserved human sperm: glycerol and other polyols as sole cryoprotectant. J Androl. 1993;14:199–209.

    CAS  PubMed  Google Scholar 

  19. Chatterjee S, Gagnon C. Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol Reprod Dev. 2001;59:451–8.

    Article  CAS  PubMed  Google Scholar 

  20. Isachenko E, Isachenko V, Katkov II, Nawroth F. Vitrification of human spermatozoa without cryoprotectants: review of problem and practical success. Reprod Biomed Online. 2003;6:191–200.

    Article  PubMed  Google Scholar 

  21. Holt WV. Alternative strategies for the long-term preservation of spermatozoa. Reprod Fertil Dev. 1997;9:309–19.

    Article  CAS  PubMed  Google Scholar 

  22. Thurston LM, Siggins K, Mileham AJ, Watson PF, Holt WV. Identification of amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability following cryopreservation. Biol Reprod. 2002;66:545–54.

    Article  CAS  PubMed  Google Scholar 

  23. Sakkas D, Tomlinson M. Assessment of sperm competence. Sem Reprod Med. 2000;18:133–9.

    Article  CAS  Google Scholar 

  24. Fraga CG, Motchnik P, Shigenaga MK, Helbock HJ, Jacon RA, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci USA. 1991;88:11033–66.

    Article  Google Scholar 

  25. Donnelly ET, Steele EK, McClure N, Lewis SEM. Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod. 2001a;16:1191–9.

    Article  CAS  PubMed  Google Scholar 

  26. Donnelly ET, McClure N, Lewis SE. Cryopreservation of human semen and prepared sperm: effect on motility parameters and DNA integrity. Fertil Steril. 2001b;76:892–900.

    Article  CAS  PubMed  Google Scholar 

  27. Hammadeh ME, Askari AS, Georg T, Rosenbaum P, Schmidt W. Effect of freezing–thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men. Intern J Androl. 1999;22:155–62.

    Article  CAS  Google Scholar 

  28. Royere D, Hamamah S, Nicolle JC, Barthelemy C, Lansac J. Freezing and thawing alter chromatin stability of ejaculated human spermatozoa: fluorescence acridine orange staining and Fuelgen DNA cytophotometric studies. Gam Res. 1988;21:51–7.

    Article  CAS  Google Scholar 

  29. Manicardi GC, Bianchi PG, Pantano S, Azzoni P, Bizzaro D, Bianchi U, Sakkas D. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromatin a(3) accessibility. Biol Reprod. 1995;52:64–867.

    Article  Google Scholar 

  30. Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. J Experiment Zool. 1999;284:696–704.

    Article  CAS  Google Scholar 

  31. Hunter JD, Bodner AJ, Hatch FT, Balhorn RL, Mazrimas JA, Mc-Queen AP, Gledhill BL. Single-strand nuclease action no heat-denatured spermiogenic chromatin. J Histochem Cytochem. 1976;24:901–7.

    Article  CAS  PubMed  Google Scholar 

  32. Lopes S, Sun JG, Juriscova A, Meriano J, Casper RF. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlated with failed fertilization in intracytoplasmic sperm injection. Fertil Steril. 1998;69:528–32.

    Article  CAS  PubMed  Google Scholar 

  33. Fahy GM. The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology. 1986;23:1–13.

    Article  CAS  PubMed  Google Scholar 

  34. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21:407–26.

    Article  CAS  PubMed  Google Scholar 

  35. Pegg DE, Diaper MP. On the mechanism of injury to slowly frozen erythrocytes. Biophys J. 1988;54:471–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaw J, Oranratnachai A, Trounson A. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology. 2000;53:59–72.

    Article  CAS  PubMed  Google Scholar 

  37. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl. 1987;8:338–48.

    Article  CAS  PubMed  Google Scholar 

  38. Bauché F, Fouchard M, Jégou B. Antioxidant system in rat testicular cells. FEBS Lett. 1994;349:392–6.

    Article  PubMed  Google Scholar 

  39. De Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3:175–94.

    Article  PubMed  Google Scholar 

  40. Fahy GM, Rall WF. Vitrification: an overview. In: Tucker M, Liebermann J, editors. Vitrification in assisted reproduction: a user’s manual and trouble-shooting guide. London: CRC; 2007. p. 1–20.

    Google Scholar 

  41. Gu W, Hecht N. Developmental expression of glutathione peroxidase, catalase, and manganese superoxide dismutase mRNAs during spermatogenesis in the mouse. J Androl. 1996;17:256–62.

    CAS  PubMed  Google Scholar 

  42. Isachenko V, Isachenko E, Montag M, Zaeva V, Krivokharchenko A, Nawroth F, Dessole S, Katkov II, Van der Ven H. Clean technique for cryoprotectant-free vitrification of human spermatozoa. Reprod Biomed Online. 2005;10:350–4.

    Article  PubMed  Google Scholar 

  43. Isachenko E, Isachenko V, Weiss JM, Kreienberg R, Katkov II, Schulz M, Lulat AG, Risopatrón MJ, Sánchez R. Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrose. Reproduction. 2008;136:167–73.

    Article  CAS  PubMed  Google Scholar 

  44. Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA. 1995;92:8831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muldrew K, McGann LE. Mechanisms of intracellular ice formation. Biophys J. 1990;57:525–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sasaki T, Wiedemann H, Matzner M, Chu ML, Timpl R. Expression of fibulin-2 by fibroblasts and deposition with fibronectin into a fibrillar matrix. J Cell Sci. 1996;109:2895–904.

    CAS  PubMed  Google Scholar 

  47. Sikka C. Andrology lab corner: role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl. 2004;25:5–18.

    Article  CAS  PubMed  Google Scholar 

  48. Steif P, Noday D, Rabin Y. Can thermal expansion differences between cryopreserved tissue and cryoprotective agents alone cause cracking? Cryo Letters. 2009;30:414–21.

    PubMed  PubMed Central  Google Scholar 

  49. Tramer F, Rocco F, Micali F, Sandri G, Panfili E. Antioxidant systems in rat epididymal spermatozoa. Biol Reprod. 1998;59:753–8.

    Article  CAS  PubMed  Google Scholar 

  50. Yavin S, Arav A. Measurement of essential physical properties of vitrification solutions. Theriogenology. 2007;67:81–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zini A, De Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl. 1993;16:183–8.

    Article  CAS  PubMed  Google Scholar 

  52. Koshimoto C, Mazur P. The effect of the osmolality of sugar-containing media, the type of sugar, and the mass and molar concentration of sugar on the survival of frozen-thawed mouse sperm. Cryobiology. 2002;45:80–90.

    Article  CAS  PubMed  Google Scholar 

  53. Wakayama T, Whittinhgam DG, Yanagimachi R. Production of normal offspring from mouse oocytes injected with spermatozoa cryopreserved with or without cryoprotection. J Reprod Fertil. 1998;112:11–7.

    Article  CAS  PubMed  Google Scholar 

  54. Rodgers W, Glaser M. Distributions of proteins and lipids in the erythrocyte membrane. Biochemistry. 1993;32:2591–12598.

    Article  Google Scholar 

  55. Jobim MIM, Oberst ER, Salbego CG, Souza DO, Wald VB, Tramontina F, Mattos RC. Two-dimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability. Theriogenology. 2004;61:255–66.

    Article  CAS  PubMed  Google Scholar 

  56. Speck RS, Jawetz E, Coleman VR. Studies on herpes simplex virus. I. The stability and preservation of egg-adapted herpes simplex virus. J Bacteriol. 1951;61:253–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Melnick JL. Preservation of viruses by freezing. Federat Proc Suppl. 1965;15:280–3.

    Google Scholar 

  58. Tomlinson MR. Risk management in cryopreservation associated with assisted reproduction. Cryo Letters. 2008;29:165–74.

    CAS  PubMed  Google Scholar 

  59. Hansen LJ, Daoussi R, Vervaet C, Remon JP, De Beer TR. Freeze-drying of live virus vaccines: a review. Vaccine. 2015;33:5507–19.

    Article  CAS  PubMed  Google Scholar 

  60. Stringfellow DA, Wolfe DF, McGuire JA, Lauerman LH, Gray BW, Sparling PH. Effects of embryo-freezing and thawing techniques on the survivability of Brucella abortus. Theriogenology. 1986;26:553–9.

    Article  CAS  PubMed  Google Scholar 

  61. Polo L, Mañes-Lázaro R, Olmeda I, Cruz-Pio LE, Medina Á, Ferrer S, Pardo I. Influence of freezing temperatures prior to freeze-drying on viability of yeasts and lactic acid bacteria isolated from wine. J Appl Microbiol. 2017;122:1603. https://doi.org/10.1111/jam.13465.

    Article  CAS  PubMed  Google Scholar 

  62. Bermudez V, Miller RB, Johnson W, Rosendal S, Ruhnke L. Effect of sample freezing on the isolation of Mycoplasma spp. from the clitoral fossa of the mare. Can J Vet Res. 1988;52:147–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Carlsen KH, Jensen JS. Mycoplasma genitalium PCR: does freezing of specimens affect sensitivity? J Clin Microbiol. 2010;48:3624–7.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yugi H, Suzuki M, Sato S, Ozaki Y. Proceedings: freeze-drying of mycoplasma. Cryobiology. 1973;10:464–7.

    Article  CAS  PubMed  Google Scholar 

  65. Piasecka-Serafin M. The effect of the sediment accumulated in containers under experimental conditions on the infection of semen stored directly in liquid nitrogen (−196 °C). Bull Acad Pol Sci Biol. 1972;20:263–7.

    CAS  PubMed  Google Scholar 

  66. Benson EE. Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Critic Rev Plant Sci. 2008;27:141–219.

    Article  CAS  Google Scholar 

  67. Bielanski A, Bergeron H, Lau PCK, Devenish J. Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology. 2003;46:146–52.

    Article  CAS  PubMed  Google Scholar 

  68. Bielanski A. Experimental microbial contamination and disinfection of dry (vapour) shipper Dewars designed for short-term storage and transportation of cryopreserved germplasm and other biological specimens. Theriogenology. 2005a;63:1946–57.

    Article  CAS  PubMed  Google Scholar 

  69. Bielanski A. Non-transmission of bacterial and viral microbes to embryos and semen stored in the vapour phase of liquid nitrogen in dry shippers. Cryobiology. 2005b;50:206–10.

    Article  CAS  PubMed  Google Scholar 

  70. Bielanski A, Vajta G. Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. Hum Reprod. 2009;24:2457–67.

    Article  CAS  PubMed  Google Scholar 

  71. Bielanski A, Lalonde A. Effect of cryopreservation by slow cooling and vitrification on viral contamination of IVF embryos experimentally exposed to bovine viral diarrhea virus and bovine herpesvirus-1. Theriogenology. 2009;72:919–25.

    Article  CAS  PubMed  Google Scholar 

  72. Bielanski A. A review of the risk of contamination of semen and embryos during cryopreservation and measures to limit cross-contamination during banking to prevent disease transmission in ET practices. Theriogenology. 2012;77:467–82.

    Article  CAS  PubMed  Google Scholar 

  73. Bielanski A. Biosafety in embryos and semen cryopreservation, storage, management and transport. Adv Experiment Med Biolo. 2014;753:429–65.

    Article  CAS  Google Scholar 

  74. Charles GN, Sire DJ. Transmission of papovavirus by cryotherapy applicator. J Amer Med Assoc. 1971;218:1435.

    Article  CAS  Google Scholar 

  75. Hawkins AE, Zuckerman MA, Briggs M, Gilson RJ, Goldstone AH, Brink NS, Tedder RS. Hepatitis B nucleotide sequence analysis: linking an outbreak of acute hepatitis B to contamination of a cryopreservation tank. J Virol Meth. 1996;60:81–8.

    Article  CAS  Google Scholar 

  76. Jones SK, Darville JM. Transmission of virus-particles by cryotherapy and multi-use caustic pencils: a problem to a dermatologist? Br J Dermatol. 1989;121:481–6.

    Article  CAS  PubMed  Google Scholar 

  77. Mortimer D. Current and future concepts and practices in human sperm cryobanking. Reprod Biomed Online. 2004;9:134–51.

    Article  CAS  PubMed  Google Scholar 

  78. Pomeroy KO, Harris S, Conaghan J, Papadakis M, Centola G, Basuray R, Battaglia D. Storage of cryopreserved reproductive tissues: evidence that cross-contamination of infectious agents is a negligible risk. Fertil Steril. (2010;94:1181–8.

    Article  PubMed  Google Scholar 

  79. Rall WF. Avoidance of microbial cross-contamination of cryopreserved gametes, embryos, cells and tissues during storage in liquid nitrogen. Embryologists’ Newsletter. 2003;6:2–15.

    Google Scholar 

  80. Schaffer TW, Everen J, Silver GH, Came PE. Biohazard: virus contaminated liquid nitrogen. Science. 1976;192:25–6.

    Google Scholar 

  81. Tedder RS, Zuckerman MA, Goldstone AH, Hawkins AE, Fielding A, Briggs EM, Irwin D, Blair S, Gorman AM, Patterson KG, Linch DC, Heptstonstall J, Brinscs NS. Hepatitis-B transmission from contaminated cryopreservation tank. Lancet. 1995;346:137–40.

    Article  CAS  PubMed  Google Scholar 

  82. Isachenko V. Response: efficacy of ultraviolet sterilization of liquid nitrogen. Reprod Biomed Online. 2011;22:502.

    Article  PubMed  Google Scholar 

  83. Parmegiani L, Accorsi A, Cognigni GE, Bernardi S, Troilo E, Filicori M. Sterilization of liquid nitrogen with ultraviolet irradiation for safe vitrification of human oocytes or embryos. Fertil Steril. 2010;94:1525–8.

    Article  PubMed  Google Scholar 

  84. Wikipedia. Deinococcus radiodurans. Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Deinococcus_radiodurans&oldid=874549478.

  85. Aoki S, Ito S, Watanabe T. UV survival of human mycoplasmas: evidence of dark reactivation in Mycoplasma buccale. Microbiol Immunol. 1979;23:147–58.

    Article  CAS  PubMed  Google Scholar 

  86. Hampar B, Aaronson SA, Derge JG, Chakrabarty M, Showalter SD, Dunn CY. Activation of an endogenous mouse type C virus by ultraviolet-irradiated herpes simplex virus types 1 and 2. Proc Natl Acad Sci USA. 1976;73:646–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Agha-Rahimi A, Khalili MA, Nabi A, Ashourzadeh S. Vitrification is not superior to rapid freezing of normozoospermic spermatozoa: effects on sperm parameters, DNA fragmentation and hyaluronan binding. Reprod Biomed Online. 2014;28:352–8.

    Article  CAS  PubMed  Google Scholar 

  88. Chen Y, Li L, Qian Y, Xu C, Zhu Y, Huang H, Jin F, Ye Y. Small-volume vitrification for human spermatozoa in the absence of cryoprotectants by using Cryotop. Andrologia. 2015;47:694–9.

    Article  CAS  PubMed  Google Scholar 

  89. Agha-Rahimi A, Khalili MA, Nottola SA, Miglietta S, Moradi A. Cryoprotectant-free vitrification of human spermatozoa in new artificial seminal fluid. Andrology. 2016;4:1037–44.

    Article  CAS  PubMed  Google Scholar 

  90. Isachenko V, Isachenko E, Katkov II, Montag M, Dessole S, Nawroth F, Van der Ven H. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biol Reprod. 2004;71:1167–73.

    Article  CAS  PubMed  Google Scholar 

  91. Dinnyes A, Dai Y, Jiang S, Yang X. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod. 2000;63:513–8.

    Article  CAS  PubMed  Google Scholar 

  92. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev. 1998;51:53–8.

    Article  CAS  PubMed  Google Scholar 

  93. Isachenko V, Maettner R, Petrunkina AM, Mallmann P, Rahimi G, Sterzik K, Sanchez R, Risopatron J, Damjanoski I, Isachenko E. Cryoprotectant-free vitrification of human spermatozoa in large (up to 0.5 mL) volume: a novel technology. Clin Lab. 2011a;57:643–50.

    CAS  PubMed  Google Scholar 

  94. Isachenko V, Isachenko E, Petrunkina AM, Sanchez R. Human spermatozoa vitrified in the absence of permeable cryoprotectants: birth of two healthy babies. Reprod Fertil Dev. 2011b;24:323–6.

    Article  Google Scholar 

  95. Isachenko V, Katkov II, Yakovenko S, Lulat A, Ulug M, Arvas A, Isachenko E. Vitrification of human laser treated blastocysts within cut standard straws (CSS): novel aseptic packaging and reduced concentrations of cryoprotectants. Cryobiology. 2007;54:305–9.

    Article  CAS  PubMed  Google Scholar 

  96. Sanchez R, Isachenko V, Petrunkina AM, Risopatron J, Schulz M, Isachenko E. Live birth after intrauterine insemination with spermatozoa from an oligoasthenozoospermic patient vitrified without permeable cryoprotectants. J Androl. 2012;33:559–62.

    Article  PubMed  Google Scholar 

  97. Isachenko V, Maettner R, Petrunkina AM, Sterzik K, Mallmann P, Rahimi G, Sanchez R, Risopatron J, Damjanoski I, Isachenko E. Vitrification of human ICSI/IVF spermatozoa without cryoprotectants: new capillary technology. J Androl. 2012;33:462–8.

    Article  CAS  PubMed  Google Scholar 

  98. Khalili MA, Adib M, Halvaei I, Nabi A. Vitrification of neat semen alters sperm parameters and DNA integrity. Urol J. 2014;11:1465–70.

    PubMed  Google Scholar 

  99. Kuznyetsov V, Moskovtsev SI, Crowe M, Lulat AG, Librach CL. Vitrification of a small number of spermatozoa in normozoospermic and severely oligozoospermic samples. Syst Biol Reprod Med. 2015;61:13–7.

    Article  PubMed  Google Scholar 

  100. Slabbert M, Du Plessis SS, Huyser C. Large volume cryoprotectant-free vitrification: an alternative to conventional cryopreservation for human spermatozoa. Andrologia. 2015;47:594–9.

    Article  CAS  PubMed  Google Scholar 

  101. Ali Mohamed MS. Slow cryopreservation is not superior to vitrification in human spermatozoa; an experimental controlled study. Iran J Reprod Med. 2015;13:633–44.

    PubMed  PubMed Central  Google Scholar 

  102. Mansilla MA, Merino O, Risopatrón J, Isachenko V, Isachenko E, Sánchez R. High temperature is essential for preserved human sperm function during the devitrification process. Andrologia. 2016;48:111–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    What is known about microvibration in general?

  2. 2.

    Is vibration a natural phenomenon?

  3. 3.

    Does vibration have a stimulating effect on living systems?

  4. 4.

    Does vibration play a role in mechanical transduction?

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isachenko, V., Rahimi, G., Mallmann, P., Sanchez, R., Isachenko, E. (2019). Technologies for Cryoprotectant-Free Vitrification of Human Spermatozoa: Asepticity as a Criterion for Effectiveness. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) In Vitro Fertilization. Springer, Cham. https://doi.org/10.1007/978-3-319-43011-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43011-9_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43010-2

  • Online ISBN: 978-3-319-43011-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics