Skip to main content

Conventional IVF Insemination

  • Chapter
  • First Online:
In Vitro Fertilization
  • 2181 Accesses

Abstract

In vitro fertilization (IVF) began by using what we call today conventional or traditional insemination techniques. In its most simplistic form, isolated cumulus-enclosed oocytes (in vitro matured or in vivo matured) are co-incubated with a number of motile spermatozoa (isolated from semen) for defined or less well-defined time periods. After co-incubation, oocytes are examined for proof that sperm penetrated the zona pellucida and oolemma: fertilization events that culminate in (1) formation of pronuclei that may be visualized in the oocyte cytoplasm or (2) cellular division if oocytes are evaluated after presumed pronuclear syngamy and dissolution. On the surface, this approach appears to be very simple and not very challenging from a technical standpoint; in fact, achieving success with human in vitro fertilization is less challenging than working with a number of other mammalian species. Be that as it may, successful fertilization cannot in vitro occur without significant oocyte- and sperm-related events. Oocyte maturation involves resumption of meiosis (nuclear maturation) and completion of cytoplasmic activities, including production, accumulation, and activation of cytoplasmic components that allow nuclear maturation and support post-fertilization events (cytoplasmic maturation). Sperm maturation involves physiological changes that must occur during transit from the testicular environment to being housed within the epididymis prior to ejaculatory expulsion, which lead to fertilizing competence (capacitation) when the sperm approaches and binds to the oocyte zona pellucida.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huxley A. Brave new world. New York: Harper Brothers; 1932.

    Google Scholar 

  2. Biggers JD. IVF and embryo transfer: historical origin and development. Reprod Biomed Online. 2012;25:118–27.

    Article  PubMed  Google Scholar 

  3. Bavister BD. Early history of in vitro fertilization. Reproduction. 2002;124:181–96.

    Article  CAS  PubMed  Google Scholar 

  4. Buster JE. Historical evolution of oocyte and embryo donation as a treatment for intractable infertility. In: Sauer M, editor. Principles of oocyte and embryo donation. New York: Springer-Verlag; 1998. p. 1–10.

    Google Scholar 

  5. Rock J, Menkin MF. In vitro fertilization and cleavage of human ovarian eggs. Science. 1944;100:105–7.

    Article  CAS  PubMed  Google Scholar 

  6. Austin CR. The capacitation of the mammalian sperm. Nature. 1952;23:326.

    Article  Google Scholar 

  7. Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 1951;168:697–8.

    Article  CAS  PubMed  Google Scholar 

  8. Yanagimachi R, Chang MC. Fertilization of hamster eggs in vitro. Nature. 1963;19:281–2.

    Article  Google Scholar 

  9. Yanagimachi R, Chang MC. In vitro fertilization of golden hamster ova. J Exp Zool. 1964;156:361–75.

    Article  CAS  PubMed  Google Scholar 

  10. Bavister BD, Edwards RG, Steptoe PC. Identification of the midpiece and tail of the spermatozoon during fertilization of human eggs in vitro. J Reprod Fertil. 1969;20:159–60.

    Article  CAS  PubMed  Google Scholar 

  11. Edwards RG, Bavister BD, Steptoe PC. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature. 1969;15:632–5.

    Article  Google Scholar 

  12. Bavister BD. How animal embryo research led to the first documented human IVF. Reprod Biomed Online. 2001;4(Suppl 1):24–9.

    Google Scholar 

  13. Edwards RG. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature. 1965a;23:349–51.

    Article  Google Scholar 

  14. Edwards RG. Maturation in vitro of human ovarian oocytes. Lancet. 1965b;6:926–9.

    Article  Google Scholar 

  15. Steptoe PC, Edwards RG. Birth after preimplantation of a human embryo. Lancet. 1978;2:366.

    Article  CAS  PubMed  Google Scholar 

  16. Paulini F, Silva RC, de Paula Rolo JLJ, et al. Ultrastructural changes in oocytes during folliculogeneis in domestic animals. J Ovarian Res. 2014;7:102.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Matsota P, Kaminioti E, Kostopanagiotou G. Anesthesia related toxic effects on in vitro fertilization outcome: burden of proof. Biomed Res Int. 2015;2015:475362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bloom MS, Kim K, Kruger PC, et al. Associations between toxic metals in follicular fluid and in vitro fertilization (IVF) outcomes. J Assist Reprod Genet. 2012;29:1369–79.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kastrop PMM, de Graaf-Miltenburd LAM, Gutknecht DR, et al. Microbial contamination of embryo cultures in an ART laboratory: sources and management. Hum Reprod. 2007;22:2243–8.

    Article  PubMed  Google Scholar 

  20. Pelzer ES, Allan JA, Waterhouse MA, et al. Microorganisms within human follicular fluid: effects on IVF. PLoS One. 2013;8:e59062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pomeroy KO. Contamination of human IVF cultures by microorganisms: a review. J Clin Embryol. 2012;13:11.

    Google Scholar 

  22. Saltes B, Molo MW, Binor Z, et al. Bacterial contamination after transvaginal aspiration (TVA) of oocytes. J Assist Reprod Genet. 1995;12:657–8.

    Article  CAS  PubMed  Google Scholar 

  23. Lavy G, Boyers SP, DeCherney AH. Hyaluronidase removal of the cumulus oophorus increases in vitro fertilization. J In Vitro Fert Embryo Transf. 1988;5:257–60.

    Article  CAS  PubMed  Google Scholar 

  24. Jaiswal BS, Tur-Kaspa I, Dor J, et al. Human sperm chemotaxis: is progesterone a chemoattractant? Biol Reprod. 1999;60:1314–9.

    Article  CAS  PubMed  Google Scholar 

  25. Oren-Benaroya R, Orvieto R, Gakamsky A, et al. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum Reprod Update. 2008;23:2339–45.

    Article  CAS  Google Scholar 

  26. Henkel R. Sperm preparation: state-of-the-art-physiological aspects and application of advanced sperm preparation methods. Asian J Androl. 2012;14:260–9.

    Article  CAS  PubMed  Google Scholar 

  27. Said AH, Reed ML. Increased count, motility, and total motile sperm cells collected across three consecutive ejaculations within 24 h of oocyte retrieval: implications for management of men presenting with low numbers of motile sperm for assisted reproduction. J Assist Reprod Genet. 2015;32:1049–55.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bianchi V, Macchiarelli G, Borini A, et al. Fine morphological assessment of quality of human mature oocytes after slow freezing or vitrification with a closed device: a comparative analysis. Reprod Biol Endocrinol. 2014;12:110.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Coticchio G, Borini A, Distratis V, et al. Qualitative and morphometric analysis of the ultrastructure of human oocytes cryopreserved by two alternative slow cooling protocols. J Assist Reprod Genet. 2010;27:131–40.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rienzi L, Gracia C, Maggiulli R, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2016; https://doi.org/10.1093/humupd/dmw038.

  31. Chang EM, Song HS, Lee DR, et al. In vitro maturation of human oocytes: its role in infertility treatment and new possibilities. Clin Exp Reprod Med. 2014;41:41–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sauerburn-Cutler MT, Vega M, Keltz M, et al. In vitro maturation and its role in clinical assisted reproductive technology. Obstet Gynecol Surv. 2015;70:45–57.

    Article  Google Scholar 

  33. Walls M, Junk S, Ryan JP, et al. IVF versus ICSI for the fertilization of in-vitro matured human oocytes. Reprod Biomed Online. 2012;25:603–7.

    Article  CAS  PubMed  Google Scholar 

  34. Beall SA, DeCherney A. History and challenges surrounding ovarian stimulation in the treatment of infertility. Fertil Steril. 2012;97:795–801.

    Article  PubMed  PubMed Central  Google Scholar 

  35. von Wolff M, Kollmann Z, Fluck CE, et al. Gonadotropin stimulation for in vitro fertilization significantly alters the hormone milieu in follicular fluid: a comparative study between natural cycle IVF and conventional IVF. Hum Reprod. 2014;29:1049–57.

    Article  CAS  Google Scholar 

  36. Jungheim ES, Meyer M, Broughton DE. Best practices for controlled ovarian stimulation. Semin Reprod Med. 2015;33:77–82.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carabatsos MJ, Sellitto C, Goodenough DA, et al. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;15:167–79.

    Article  CAS  Google Scholar 

  38. Buccione R, Schroeder AC, Eppig JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod. 1990;43:543–7.

    Article  CAS  PubMed  Google Scholar 

  39. Watson AJ. Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J Anim Sci. 2014;85(E.Suppl):E1–3.

    Google Scholar 

  40. Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update. 2008;14:431–46.

    Article  PubMed  Google Scholar 

  41. Boehlen D, Schmid HP. Novel use of fine needle aspiration of seminal vesicles for sperm retrieval in infertile men. Urology. 2005;66:880.

    Article  PubMed  Google Scholar 

  42. Cerruto MA, Novella G, Antoniolli SZ, et al. Use of transperineal fine needle aspiration of seminal vesicles to retrieve sperm in a man with obstructive azoospermia. Fertil Steril. 2006;86:1764e7–9.

    Article  Google Scholar 

  43. Harris SE, Sandlow JL. Sperm acquisition in nonobstructive azoospermia: what are the options? Urol Clin North Am. 2008;35:235–42.

    Article  PubMed  Google Scholar 

  44. Healy MW, Yauger BJ, James AN, et al. Seminal vesicle aspiration from wounded warriors. Fertil Steril. 2016;106:579–83.

    Article  PubMed  Google Scholar 

  45. Bernie AM, Ramasamy R, Stember DS, et al. Microsurgical epididymal sperm aspiration: indications, techniques and outcomes. Asian J Androl. 2013;14:40–3.

    Article  Google Scholar 

  46. Cooper TG. In defense of a function for the human epididymis. Fertil Steril. 1990;54:965–75.

    Article  CAS  PubMed  Google Scholar 

  47. Cooper TG. The human epididymis, sperm maturation and storage. ANIR-ANHP. 2007;9:18–24.

    Google Scholar 

  48. Cooper TG. Recent advances in sperm maturation in the human epididymis. Androl. 2002;12:38.

    Article  Google Scholar 

  49. Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2009;15:213–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hinton BT. What does the epididymis do and how does it do it? In: Robaire B, Chan P, editors. Handbook of andrology. 2nd ed. Lawrence: Allen Press Inc; 2010.

    Google Scholar 

  51. Brackett BG. Advances in animal in vitro fertilization. In: Wolf DP, Zelinski-Wooten M, editors. Contemporary endocrinology: assisted fertilization and nuclear transfer in mammals. Tolowa: Humana Press Inc; 2001. p. 21–51.

    Chapter  Google Scholar 

  52. Silber SJ, Balmaceda J, Borrero C, et al. Pregnancy with sperm aspiration from the proximal head of the epididymis: a new treatment for congenital absence of the vas deferens. Fertil Steril. 1988;50:525–8.

    Article  CAS  PubMed  Google Scholar 

  53. Hirsh AV, Mills C, Bekir J, et al. Andrology: factors influencing the outcome of in-vitro fertilization with epididymal spermatozoa in irreversible obstructive azoospermia. Hum Reprod. 1994;9:1710–6.

    Article  CAS  PubMed  Google Scholar 

  54. Silber SJ, Nagy ZP, Liu J, et al. Conventional in-vitro fertilization versus intracytoplasmic sperm injection for patients requiring microsurgical sperm aspiration. Hum Reprod. 1994;9:1705–9.

    Article  CAS  PubMed  Google Scholar 

  55. Bjorndahl L, Mohammadieh M, Pourian M, et al. Contamination by seminal plasma factors during sperm selection. J Androl. 2005;26:170–3.

    Article  PubMed  Google Scholar 

  56. Green S, Fishel S, Rowe P. The incidence of spontaneous acrosome reaction in homogeneous populations of hyperactivated spermatozoa. Hum Reprod. 1999;14:1819–22.

    Article  CAS  PubMed  Google Scholar 

  57. Aitken RJ, Nixon B. Sperm capacitation: a distant landscape glimpsed but not explored. Mol Hum Reprod. 2013;19:785–93.

    Article  CAS  PubMed  Google Scholar 

  58. Bedford JM. Sperm capacitation and fertilization in mammals. Biol Reprod Suppl. 1970;2:128–58.

    Article  CAS  PubMed  Google Scholar 

  59. Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci. 2000;5:E110–23.

    Article  CAS  PubMed  Google Scholar 

  60. Sakkas D, Leppens-Luisier G, Lucas H, Chardonnens D, Campana A, Franken DR, Urner F. Localization of tyrosine phosphorylated proteins in human sperm and relation to capacitation and zona pellucida binding. Biol Reprod. 2003;68:1463–9.

    Article  CAS  PubMed  Google Scholar 

  61. De Jonge C. Biological basis for human capacitation. Hum Reprod Update. 2005;11:205–14.

    Article  PubMed  Google Scholar 

  62. Mitchell LA, Nixon B, Aitken RJ. Analysis of chaperone proteins associated with human spermatozoa during capacitation. Mol Hum Reprod. 2007;13:605–13.

    Article  CAS  PubMed  Google Scholar 

  63. Ickowicz D, Finkelstein M, Breitbart H. Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J Androl. 2012;14:816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tosti E, Menezo Y. Gamete activation: basic knowledge and clinical applications. Hum Reprod Update. 2016;22:420–39.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Swain JE. Is there an optimal pH for culture media used in clinical IVF? Hum Reprod Update. 2012;18:333–9.

    Article  CAS  PubMed  Google Scholar 

  66. Cross NL. Effect of pH on the development of acrosomal responsiveness of human sperm. Andrologia. 2007;39:55–9.

    Article  CAS  PubMed  Google Scholar 

  67. Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14:647–57.

    Article  CAS  PubMed  Google Scholar 

  68. Contri A, Gloria A, Robbe D, Valorz C, Wegher L, Carluccio A. Kinematic study on the effect of pH on bull sperm function. Anim Reprod Sci. 2013;136:252–9.

    Article  CAS  PubMed  Google Scholar 

  69. Zhou J, Chen L, Li J, Hong Z, Xie M, Chen S, Yao B. The semen pH affects sperm motility and capacitation. PLoS One. 2015;10:e0132974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kirichok Y, Lishko PV. Rediscovering sperm ion channels with the patch-clamp technique. Mol Hum Reprod. 2011;17:478–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nishigaki T, Jose O, Gonzalez-Cota Al, et al. Intracellular pH in sperm physiology. Biochem Biophys Res Cummun. 2014;450:1149–58.

    Article  CAS  Google Scholar 

  72. Chang J-C, Oude-Elferink RPJ. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation. Front Physiol. 2014;5:42.

    PubMed  PubMed Central  Google Scholar 

  73. Battistone MA, Da Ros VG, Salicioni AM, Navarrete FA, Krapf D, Visconi PE, Cusnicu PS. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol Hum Reprod. 2013;19:570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hereng TH, Elgstoen KB, Eide L, Rosendal KR, Skalhegg BS. Serum albumin and HCO3- regulate separate pools of ATP in human spermatozoa. Hum Reprod. 2014;29:918–30.

    Article  CAS  PubMed  Google Scholar 

  75. Morbeck DE, Krisher RL, Herrick JR, et al. Composition of commercial media used for human embryo culture. Fertil Steril. 2014;102:759–766.e9.

    Article  CAS  PubMed  Google Scholar 

  76. Swain JE, Pool TB. New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reprod Biomed Online. 2009;18:799–810.

    Article  PubMed  Google Scholar 

  77. Will MA, Clark NA, Swain JE. Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Genet. 2011;28:711–24.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Parinaud J, Milhet P, Vietez G, et al. Human sperm capacitation and in-vitro fertilization in a chemically defined and protein-free SMART1. Hum Reprod. 1998;13:2579–82.

    Article  CAS  PubMed  Google Scholar 

  79. Parinaud J, Milhet P, Vietez G, et al. Use of a medium devoid of any human or animal compound (SMART2) for embryo culture in intracytoplasmic sperm injection. J Assist Reprod Genet. 1999;16:13–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Peirce KL, Roberts P, Ali J, et al. The preparation and culture of washed human sperm: a comparison of a suite of protein-free media with media containing human serum albumin. Asian Pac J Reprod. 2015;4:222–7.

    Article  Google Scholar 

  81. Shih YF, Tzeng SL, Chen WJ, Huang CC, Chen HH, Lee TH, Lee MS. Effects of synthetic serum supplementation in sperm preparation media on sperm capacitation and function test results. Oxid Med Cell Longev. 2016;2016:1027158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Leonard PH, Charlesworth MC, Benson L, et al. Variability in protein quality used for embryo culture: embryotoxicity of the stabilizer octonoic acid. Fertil Steril. 2013;100:544–9.

    Article  CAS  PubMed  Google Scholar 

  83. Minhas BS, Ripps BA. Methods for enhancement of sperm function. Front Biosci. 1996;1:e65–71.

    Article  CAS  PubMed  Google Scholar 

  84. Buffone MG, Wertheimer EV, Visconti PE, et al. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta. 2014;1842:2610–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reed ML. Culture systems: embryo density. Methods Mol Biol. 2012;912:273–312.

    CAS  PubMed  Google Scholar 

  86. Smith GD, Takayama S, Swain JE. Rethinking in vitro embryo culture: new developments in culture platforms and potential to improve assisted reproductive technologies. Biol Reprod. 2012;86:1–10.

    Google Scholar 

  87. Munch EM, Sparks AE, Duran HE, et al. Lack of carbon air filtration impacts early embryo development. J Assist Reprod Genet. 2015;32:1009–17.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wolf DP, Byrd W, Dandekar P, et al. Sperm concentration and the fertilization of human eggs in vitro. Biol Reprod. 1984;31:837–48.

    Article  CAS  PubMed  Google Scholar 

  89. Oehninger S, Kruger TF, Simon T, et al. A comparative analysis of embryo implantation potential in patients with severe teratozoospermia undergoing in-vitro fertilization with a high insemination concentration or intracytoplasmic sperm injection. Hum Reprod. 1996;11:1086–9.

    Article  CAS  PubMed  Google Scholar 

  90. Chemes HE, Rawe VY. Sperm pathology: a step beyond descriptive morphology. Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men. Hum Reprod Update. 2003;9:405–28.

    Article  PubMed  Google Scholar 

  91. Liu DY, Baker HWG. Defective sperm-zona pellucida interaction: a major cause of fertilization failure in clinical in-vitro fertilization. Hum Reprod. 2000;15:702–8.

    Article  CAS  PubMed  Google Scholar 

  92. Liu DY, Garrett C, Baker HWG. Low proportions of sperm can bind to the zona pellucida of human oocytes. Hum Reprod. 2003;18:2382–9.

    Article  CAS  PubMed  Google Scholar 

  93. Ming L, Yuan C, Ping Z, et al. Conventional in vitro fertilization maybe yields more available embryos than intracytoplasmic sperm injection for patients with no indications for ICSI. Int J Clin Exp Med. 2015;8:21593–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ohgi S, Hagihara C, Anakubo H, et al. A comparison of the clinical outcomes of embryo derived from intracytoplasmic sperm injection after early fertilization check and conventional insemination using sibling oocytes. Arch Gynecol Obstet. 2016;293:887–92.

    Article  PubMed  Google Scholar 

  95. Staessen C, Camus M, Clasen K, et al. Conventional in-vitro fertilization versus intracytoplasmic sperm injection in sibling oocytes from couples with tubal infertility and normozoospermic semen. Hum Reprod. 1999;14:2474–9.

    Article  CAS  PubMed  Google Scholar 

  96. Trounsen AO, Mohr LR, Wood C, et al. Effect of delayed insemination on in-vitro fertilization, culture and transfer of human embryos. J Reprod Fertil. 1982;64:285–94.

    Article  Google Scholar 

  97. Jacobs M, Stolwijk AM, Wetzels AMM. The effect of insemination/injection time on the results of IVF and ICSI. Hum Reprod. 2001;16:1708–13.

    Article  CAS  PubMed  Google Scholar 

  98. Gianaroli L, Magli MC, Ferraretti AP, et al. Reducing the time of sperm-oocyte interaction in human in-vitro fertilization improves the implantation rate. Hum Reprod. 1996;11:166–71.

    Article  CAS  PubMed  Google Scholar 

  99. Xiong S, Han W, Liu JX, et al. Effects of cumulus cells removal after 6 h co-incubation of gametes on the outcomes of human IVF. J Assist Reprod Genet. 2011;28:1205–11.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Scott L, Finn A, O’Leary T, McLellan S, Hill J. Morphological parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod. 2007;22:230–40.

    Article  CAS  PubMed  Google Scholar 

  101. Yanez LZ, Han J, Behr BB, et al. Human oocyte developmental potential is predicted by mechanical properties within hours of fertilization. Nat Commun. 2016;24:10809.

    Article  CAS  Google Scholar 

  102. Azzarello A, Hoest T, Mikkelsen AL. The impact of pronuclei morphology and dynamicity of live birth outcome and time-lapse culture. Hum Reprod. 2012;27:2649–57.

    Article  CAS  PubMed  Google Scholar 

  103. Caglar GS, Hammadeh M, Asimakopoulos B, et al. In vivo and in vitro decondensation of human sperm and assisted reproduction technologies. In Vivo. 2005;19:623–30.

    PubMed  Google Scholar 

  104. Sutovsky P, Schatten G. Paternal contributions to the mammalian oocyte: fertilization after sperm egg fusion. Int Rev Cytol. 2000;195:1–65.

    CAS  PubMed  Google Scholar 

  105. Van Blerkom J, Davis P, Alexander S. Occurrence of maternal and paternal spindles in unfertilized human oocytes: possible relationship to nucleation defects after silent fertilization. Reprod Biomed Online. 2004;8:454–9.

    Article  PubMed  Google Scholar 

  106. Van Blerkom J, Davis P, Merriam J, et al. Nuclear and cytoplasmic dynamics of sperm penetration, pronuclear formation and microtubule organization during fertilization and early preimplantation development in the human. Hum Reprod Update. 1995;1:429–61.

    Article  PubMed  Google Scholar 

  107. Williams CJ. Signaling mechanisms of mammalian oocyte activation. Hum Reprod Update. 2002;8:313–21.

    Article  CAS  PubMed  Google Scholar 

  108. Capmany G, Taylor A, Braude PR, et al. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo. Mol Hum Reprod. 1996;2:299–306.

    Article  CAS  PubMed  Google Scholar 

  109. Lassalle B, Testart J. Sequential transformations of human sperm nucleus in human egg. J Reprod Fertil. 1991;91:393–402.

    Article  CAS  PubMed  Google Scholar 

  110. Nagy ZP, Janssenswillen C, Jansssens R, et al. Timing of oocyte activation, pronucleus formation and cleavage in humans after intracytoplasmic sperm injection (ICSI) with testicular sperm and after ICSI or in-vitro fertilization on sibling oocytes with ejaculated sperm. Hum Reprod. 1998;13:1606–12.

    Article  CAS  PubMed  Google Scholar 

  111. Snook RR, Hosken DJ, Karr TL. The biology and evolution of polyspermy: insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg. Reproduction. 2011;142:779–92.

    Article  PubMed  Google Scholar 

  112. Malter HE, Cohen J. Embryonic development after microsurgical repair of polyspermic human zygotes. Fertil Steril. 1989;52:373–80.

    Article  CAS  PubMed  Google Scholar 

  113. Papale L, Fiorentino A, Montag M, et al. The zygote. Hum Reprod. 2012;27:SI:i22–49.

    Article  Google Scholar 

  114. van der Ven HH, Al-Hasani S, Diedrich K, et al. Polyspermy and in vitro fertilization of human oocytes: frequency and possible causes. Ann N Y Acad Sci. 1985;442:88–95.

    Article  PubMed  Google Scholar 

  115. Dale B, DeFelice L. Polyspermy prevention: facts and artifacts? J Assist Reprod Genet. 2011;28:199–207.

    Article  PubMed  Google Scholar 

  116. Mio Y, Iwata K, Yumoto K, et al. Possible mechanism of polyspermy block in human oocytes observed by time-lapse cinematography. J Assist Reprod Genet. 2012;29:951–6.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Reed ML, Ezeh PC, Hamic A, et al. Polyspermic and polygynic fertilization: influence of oocyte source and insemination technique – a retrospective analysis. Fertil Steril. 2008;90(Suppl 1):S340.

    Article  Google Scholar 

  118. Porter R, Han T, Tucker MJ, et al. Estimation of second polar body retention rate after conventional insemination and intracytoplasmic sperm injection: in vitro observations from more than 5000 human oocytes. J Assist Reprod Genet. 2003;20:371–6.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Baltz JM. Connections between preimplantation embryo physiology and culture. J Assist Reprod Genet. 2013;30:1001–7.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90:473–83.

    Article  PubMed  Google Scholar 

  121. Chronopoulou E, Harper JC. IVF culture media: past, present, future. Hum Reprod Update. 2015;21:39–55.

    Article  CAS  PubMed  Google Scholar 

  122. Gardner DK. Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev. 2008;20:9–18.

    Article  PubMed  Google Scholar 

  123. Mantikou E, Youssef MAFM, van Wely M, et al. Embryo culture media and IVF/ICSI success rates: a systematic review. Hum Reprod Update. 2013;19:210–20.

    Article  CAS  PubMed  Google Scholar 

  124. Swain JE, Carrell D, Cobo A, et al. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril. 2016;105:571–87.

    Article  PubMed  Google Scholar 

  125. Hwang K, Lamb DJ. The sperm penetration assay for the assessment of fertilization capacity. Methods Mol Biol. 2013;927:103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Oehninger S, Franken DR, Ombelet W. Sperm functional tests. Fertil Steril. 2014;102:1528–33.

    Article  PubMed  Google Scholar 

  127. Wiser A, Sachar S, Ghetler Y, et al. Assessment of sperm hyperactivated motility and acrosome reaction can discriminate the use of spermatozoa for conventional in vitro fertilisation or intracytoplasmic sperm injection: preliminary results. Andrologia. 2014;46:313–5.

    Article  CAS  PubMed  Google Scholar 

  128. Kuczynski W, Dhont M, Grygoruk C, et al. Rescue ICSI of unfertilized oocytes after IVF. Hum Reprod. 2002;17:2423–7.

    Article  CAS  PubMed  Google Scholar 

  129. Singh N, Malhorta N, Shende U, et al. Successful live birth after rescue ICSI following failed fertilization. J Hum Reprod Sci. 2013;6:77–8.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cozzubbo T, Neri QV, Paniza T, et al. Delayed pronuclear appearance as an indication of compromised oocyte repair capacity. Fertil Steril. 2015;104(Suppl):e303.

    Article  Google Scholar 

  131. Stringfellow DA. Recommendations for the sanitary handling of in-vivo-derived embryos. In: Stringfellow DA, Seidel SM, editors. Manual of the International Embryo Transfer Society. 3rd ed. Savoy: International Embryo Transfer Society; 1998. p. 79–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    List the in vivo physiological conditions regulating sperm capacitation that can be translated to the in vitro process.

  2. 2.

    List the visible physiological change(s) that occur during sperm capacitation.

  3. 3.

    List three physiological failure points for troubleshooting a cycle with completely failed fertilization.

  4. 4.

    Identify the physiological and nonphysiological functions performed by protein supplements.

  5. 5.

    Describe the differences between polyspermic and polygynic pronuclei and identifiers of each condition, and detail an approach to remedy each condition.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reed, M.L. (2019). Conventional IVF Insemination. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) In Vitro Fertilization. Springer, Cham. https://doi.org/10.1007/978-3-319-43011-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43011-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43010-2

  • Online ISBN: 978-3-319-43011-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics