Skip to main content

Application of Isotopic Materials Science in Bulk and Low-Dimensional Structures

  • Chapter
  • First Online:
Introduction to Isotopic Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 248))

  • 589 Accesses

Abstract

This chapter reviews the application of isotopic materials science in different fields of nanotechnology and nanoscience. The application of stable isotopes is very briefly described: in first step nonlinear excitons in bulk isotope-mixed materials as well as phonon-related isotope effect: thermal expansion, thermal conductivity, and lattice constants. Part of this chapter is devoted to very interesting results connecting with isotope-mixed graphene and its application in nanoelectronics as well as nano-optics. Semiconducting graphene is based on the electronic excitation energy renormalization by the strong (nuclear) interaction. It was shown very useful for quantum processors that have used the low-dimensional structures (quantum wells, wires, and dots) in isotope-mixed compounds including graphene. The materials of this chapter stress very perspective of the new field of nanotechnology—isotopic materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. V.Ju. Baranov (ed.), Isotopes, vols. 1, 2 (Fizmatlit, Moscow, 2005). (in Russian)

    Google Scholar 

  2. A.A. Berezin, Isotopic engineering (perspectives). J. Phys. Chem. Solids 50, 5–8 (1989)

    CAS  Google Scholar 

  3. E.E. Haller, Isotopically engineered semiconductors. J. Appl. Phys. 77, 2857–2878 (1995)

    CAS  Google Scholar 

  4. V.G. Plekhanov, Isotope engineering. Uspekhi - Phys. 170, 1245–1252 (2000). (in Russian)

    Google Scholar 

  5. V.G. Plekhanov, Applications of the Isotopic Effect in Solids (Springer, Heidelberg, 2004)

    Google Scholar 

  6. A.A. Berezin, Stable isotopes in nanotechnology. Nanotechn. Percept. 5, 27–36 (2009)

    CAS  Google Scholar 

  7. V.G. Plekhanov, Isotopes in Condensed Matter (Springer, Heidelberg, 2013)

    Google Scholar 

  8. A. Sudbery, Quantum Mechanics and the Particles of Nature (Cambridge University Press, Cambridge, 1986)

    Google Scholar 

  9. J.W. Gibbs, One of the equilibrium of heterogeneous substances, in The Scientific Papers of J.W. Gibbs (Dover, New York, 1961)

    Google Scholar 

  10. M.J. Kelly, Low-Dimensional Semiconductors (Clarendon Press, Oxford, 1995)

    Google Scholar 

  11. J.H. Davis, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  12. P. Harrison, Qquantum Wells, Wires and Dots (Wiley, New York, 2001)

    Google Scholar 

  13. K. Goser, P. Glösekötter, J. Dienstuhl, Nanoelectronics and Nanosystems (Springer, Berlin, 2004)

    Google Scholar 

  14. V.G. Plekhanov, Isotope Low-Dimensional Structures (Heidelberg, Springer, 2012)

    Google Scholar 

  15. A. Cho (ed.), Molecular Beam Epitaxy (Springer, Berlin, 1997)

    Google Scholar 

  16. G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd edn. (Academic Press, London, 1999)

    Google Scholar 

  17. A. Rastelli, S. Kiravittaya, O.G, Schmidt, Growth and control of optically active quantum dots, in Nanoscience and Technology, ed. by P. Mihler (Springer, Berlin, 2009)

    Google Scholar 

  18. V.A. Shchukin, D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 (1999)

    Google Scholar 

  19. J. Strangl, V. Holy, G. Bauer, Structural properties of self-organized semiconductor nanostructures. ibid 76, 725–783 (2004)

    Google Scholar 

  20. C.J. Chen, Introduction to Scanning Tunneling Microscoppy (Oxford University Press, New York, 1993)

    Google Scholar 

  21. L. Esaki, R. Tsu, Supelattice and negative differential conductivity in semiconductors. IBM J. Res. Develop. 14, 61 (1970)

    CAS  Google Scholar 

  22. V.G. Plekhanov, Isotope Effects in Solid State Physics (Academic Press, San Diego, 2001)

    Google Scholar 

  23. V.G. Plekhanov, Isotope-Based Quantum Information (2009), arXiv: quant-ph/0909.0820

  24. P. Michler (ed.) Single Semiconductor Quantum Dots (Springer, Berlin, 2009)

    Google Scholar 

  25. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Halsted Press, New York, 1988)

    Google Scholar 

  26. C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Academic Press, San Diego, 1991)

    Google Scholar 

  27. K. Thyagarajan, A.K. Ghatak (eds.), Lasers Theory and Applications (Plenum Press, New York, 1982)

    Google Scholar 

  28. C. Klingshirn, Lasers processes in semiconductors, in Spectr. Solid-State Laser Type Matter, Proceedings of Course Enrico Fermi, Erice (New York, London, 1989)

    Google Scholar 

  29. C. Klingshirn, H. Haug, Optical properties of highly excited direct gap semiconductors. Phys. Rep. 70, 315–398 (1981)

    CAS  Google Scholar 

  30. V.G. Plekhanov, Elementary excitations in isotope-mixed crystals. Phys. Rep. 410, 1–235 (2005)

    CAS  Google Scholar 

  31. M. Cardona, M.L.W. Thewalt, Isotope effect on optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173–1224 (2005)

    CAS  Google Scholar 

  32. K. Takiyama, M.I. Abd-Elrahman, T. Fujita et al., Photoluminescence and decay kinetics of indirect free excitons in diamonds under near-resonant laser excitation. Solid State Commun. 99, 793–796 (1996)

    Google Scholar 

  33. K. Horiuchi, K. Nakamura, S. Yamashita, Current injection free-exciton recombination emission from synthesized diamond. Jpn. J. Appl. Phys. 39, L604–L608 (2000)

    CAS  Google Scholar 

  34. S. Koizumi, K. Watanabe, M. Hasegawa et al., Ultraviolet emission from a diamond pn junction. Science 292, 1899–1901 (2001)

    CAS  Google Scholar 

  35. B.E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    CAS  Google Scholar 

  36. H. Watanabe, C.E. Nebel, S. Shikata, Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009)

    CAS  Google Scholar 

  37. V.F. Agekyan, B.G. Alexandrov, Yu.A. Stepanov, Spectral and time domain characteristics of thermal localized excitons in solid solutions CdS\(_1-{\rm {x}} \)Se\(_{\rm {x}}\). Phys. Techn. Semicond. (St.-Petrsburg) 22, 1221 (1988). (in Ruasian)

    Google Scholar 

  38. H. Haug, Ultrafast physical processes in semiconductors, in Semiconductor and Semimetalls, vol. 67, ed. by K.T. Tsen, R.K. Willardson, K. Weber (San Diego, Academic Press, 2001) p. 201

    Google Scholar 

  39. K.C. Liu, R. Liboff, Criterion for exciton lasing in pure crystals. J. Appl. Phys. 54, 5633–5637 (1983)

    CAS  Google Scholar 

  40. C.A. Benoit la Guilaume, A. Bonnot, J.M. Debever, Luminescence from polaritons. Phys. Rev. Lett. 24, 1235–1238 (1970)

    Google Scholar 

  41. B. Honerlage, R. Levy, J.R. Grun, The dispersion of excitons, polaritons and biexcitons in direct-gap semiconductors. Phys. Rep. 124, 161–253 (1985)

    Google Scholar 

  42. V.G. Plekhanov, Comparative study of isotope and chemical effects on the exciton states in LiH crystals. Prog. Solid State Chem. 29, 71–177 (2001)

    CAS  Google Scholar 

  43. H. Haug, S.W. Koch, Quantum Theory of Optical and Electronic Properties of Semiconductors (World Scientific, London, 1993)

    Google Scholar 

  44. S.I. Pekar, Crystal Optics and Additional Light Waves (Menlo Park, Benjamin/Cummings, San Francisco, 1983)

    Google Scholar 

  45. Y. Toyozawa, On dynamical behavior of excitons. Prog. Theor. Phys. (Kyoto) 12 (Suppl.) 111–140 (1959)

    Google Scholar 

  46. N.G. Basov, O.V. Bogdankevich, A.G. Devyatkov, Cadmium sulfide laser excited by fast electrons. Sov. Phys. JETP 20, 1067–1068 (1964)

    Google Scholar 

  47. L.A. Kulevsky, A.M. Prokhorov, The nature of the laser emission in CdS crystal at 90 K with two-photon excitation. IEEE QE 2, 584–586 (1966)

    Google Scholar 

  48. V.G. Plekhanov, Resonant secondary emission spectra, in Proceedings of the International Conference on LASERS’80 (STS Press, McClean, 1981), pp. 91–99

    Google Scholar 

  49. V.G. Plekhanov, V.I. Altukhov, Free exciton luminescence and exciton - phonon interaction parameters of wide-gap insulators, in Proceedings of the International Conference on LASERS’82 (STS Press, McClean, 1983), pp. 292–299

    Google Scholar 

  50. V.G. Plekhanov, Wannier-Mott excitons in isotope disordered crystals. Rep. Prog. Phys. 61, 1045–1097 (1998)

    CAS  Google Scholar 

  51. V.G. Plekhanov, Changes in spectra of luminescence and Raman scattering in lithium hydride under growth in the excitation intensity. Quantum Electron. (Moscow) 16, 2156–2159 (1989)

    CAS  Google Scholar 

  52. R.S. Knox, Theory of Excitons (Academic Press, New York, 1963)

    Google Scholar 

  53. E.F. Gross, Selected Papers (Leningrad, Science, 1976). (in Russian)

    Google Scholar 

  54. G. Leifried, W. Ludwig, Theory of Anharmonic Effect in Crystals (Academic Press, New York, 1961)

    Google Scholar 

  55. W. Cochran, R.A. Cowley, Phonons in perfect crystals, in Encyclopedia of Physics, ed. by S. Flügge (ed), vol. 25/2 (Light and Matter) (Springer, Berlin, 1967)

    Google Scholar 

  56. G.P. Srivastawa, The Physics of Phonons (Hilger, Bristol, 1990)

    Google Scholar 

  57. I.E. Tamm, Eine Bemerkung zur Diracschen Theorie der Lichtenstroung und Dispersion. Zs. Phys. 62, 705–708 (1930)

    Google Scholar 

  58. M. Blackman, The specific heat of solids, in Handbuch der Physik, vol. 7, Pt. 1, ed. by S. Flüge (Springer, Berlin, 1955), pp. 325–367

    Google Scholar 

  59. P. Klemens, Thermal conductivity and lattice vibrational modes, in Solid State Physics, vol. 7, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1959), pp. 1–98

    Google Scholar 

  60. P. Debye, The Debye theory of specific heat. Ann. Phys. (Leipzig) 4(39), 789–803 (1912)

    Google Scholar 

  61. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, New York, 1968)

    Google Scholar 

  62. V.A. Krymov, D.L. Fukc, Transactions of the Universities of USSR. Phys. 30, 39–51 (1987). (in Russian)

    CAS  Google Scholar 

  63. E. Grüneisen, Theorie des festen Zustandes einatomiger Elemente. Ann. Phys. 4(39), 257–306 (1912)

    Google Scholar 

  64. E. Grüneisen, Zustand des festen Körpers. Handbuch der Physik 10, 1–59 (1926)

    Google Scholar 

  65. P. Debye, Zur Theorie der spezifischen Wärmen. Ann. Phys. 4(39), 789–807 (1912)

    Google Scholar 

  66. G. Dolling, R.A. Cowley, The thermodynamic and optical properties of germanium, silicon, diamond and gallium arsenide. Proc. Phys. Soc. 88, 463–494 (1966)

    CAS  Google Scholar 

  67. T.H. Baron, J.G. Collins, G.K. White, Thermal expansion of solids at low temperatures. Adv. Phys. 29, 609–730 (1980)

    Google Scholar 

  68. V.I. Ozhogin, A.V. Inyushkin, A.N. Taldenkov, Isotope effect for thermal expansion coefficient of germanium. JETP Lett. (Moscow) 63, 463–466 (1996)

    CAS  Google Scholar 

  69. D.F. Gibbons, Thermal expansion of some crystals with the diamond structure. Phys. Rev. 112, 136–140 (1958)

    CAS  Google Scholar 

  70. S.I. Novikova, Thermal Expansion of Solids (Science, Moscow, 1974) (in Russian)

    Google Scholar 

  71. D.K. Smith, H.R. Leider, Low-temperature thermal expansion of LiH, MgO and CaO. J. Appl. Cryst. 1, 246–249 (1968)

    CAS  Google Scholar 

  72. H. Jex, Thermal expansion and mode Grüneisen parameters of LiH and LiD. J. Phys. Chem. Solids 35, 1221–1223 (1974)

    CAS  Google Scholar 

  73. B.W. James, H. Kherandish, The low temperature variation of the elastic constants of LiH and LiD. J. Phys. C: Solid State Phys. 15, 6321–6339 (1982)

    CAS  Google Scholar 

  74. D. Gerlich, C.S. Smith, The pressure and temperature derivatives of the elastic module of lithium hydride. J. Phys. Chem Solids 35, 1587–1592 (1974)

    CAS  Google Scholar 

  75. Q. Johnson, A.C. Mitchel, Search for the NaCl and CsCl transition in LiH by flash X-ray diffraction. Acta Cryst. A31, S241–S245 (1975)

    Google Scholar 

  76. T.H. Geballe, G.W. Hull, Isotopic and other types of thermal resistance in germanium. Phys. Rev. 110, 773–775 (1958)

    CAS  Google Scholar 

  77. J.J. Fontanella, D.E. Schuele, Low temperature Grüneisen parameter of RbI from elasticity data. J. Phys. Chem. Solids 31, 647–654 (1970)

    CAS  Google Scholar 

  78. S. Haussuhl, I. Skorczyk, Elastische und thermoelastische Eigenschaften von LiH und LiD einkristallen. Zs. Krist. 130, 340–345 (1969)

    Google Scholar 

  79. A.R. Ubellohde, The Molten State of Substances (Metallurgy, Moscow, 1982). (in Russian)

    Google Scholar 

  80. H. Dammak, E. Antonshchenkova, M. Hayoun et al., Isotope effect in lithium hydride and lithium deuteride by molecular dynamics simulations. J. Phys. Condens. Matt. 24, 435402–6 (2012)

    Google Scholar 

  81. G.L. Anderson, G. Nasise, K. Phillipson et al., Isotopic effects on the thermal expansion of lithium hydride. J. Phys. Chem. Solids 31, 613–618 (1970)

    CAS  Google Scholar 

  82. R.B. Von Dreele, J.G. Morgan, S.M. Stishov, Thermal expansion and equation of state of KCN of different isotopic composition. JETP (Moscow) 114, 2182–2186 (1998). (in Russian)

    Google Scholar 

  83. V.I. Tyutyunnik, Effect of isotope substitution on thermal expansion of LiH crystal. Phys. Status Solidi (b) 172, 539–543 (1992)

    CAS  Google Scholar 

  84. V.S. Kogan, Isotope effect in structuring properties. Sov. Phys. Uspekhi 5, 579–618 (1963)

    Google Scholar 

  85. V.I. Ozhogin, A.V. Inyushkin, A.N. Taldenkov et al., Isotope effect for thermal expansion coefficient of germanium. JETP (Moscow) 115, 243–248 (1999). (in Russian)

    Google Scholar 

  86. L. Wei, P.K. Kuo, R.L. Thomas, Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 79, 3764–3767 (1993)

    Google Scholar 

  87. M. Asen-Palmer, K. Bartkowsky, E. Gmelin et al., Thermal conductivity of germanium crystals with different isotopic composition. Phys. Rev. B 56, 9431–9447 (1997)

    Google Scholar 

  88. T. Ruf, R.W. Henn, M. Asen-Palmer et al., Thermal conductivity of isotopically enriched silicon. Solid State Commun. 115, 243–247 (2000); Erratum 127, 257 (2003)

    Google Scholar 

  89. N.W. Aschcroft, N. David Mermin, Solid State Physics (Harcourt Brace College Publishers, New York, 1975)

    Google Scholar 

  90. M. Born, K. Huang, Dynamical Theory of Crystal Lattice (Oxford University Press, Oxford, 1988)

    Google Scholar 

  91. V.N. Kostryukov, The capacity of LiH between 3.7 and 295K. Zh. Fiz. Khim. (Moscow) 35, 1759–1762 (1961) (in Russian)

    Google Scholar 

  92. D.N. Batchelor, R.O. Simons, Lattice constants and thermal expansivities of silicon and calcium fluoride between 6 and 322K. J. Chem. Phys. 41, 2324–2330 (1964)

    Google Scholar 

  93. V.G. Plekhanov, Isotope effect in lattice dynamics. Physics - Uspekhi (Moscow) 46, 689–717 (2003)

    CAS  Google Scholar 

  94. G. Yates, G.H. Wostenholm, J.K. Bingham, The specific heat of \(^{7}\)LiH and \(^{7}\)LiD at low temperature. J. Phys. C: Solid state Phys. 7, 1769–1778 (1974)

    CAS  Google Scholar 

  95. F.F. Voronov, V.A. Goncharov, Compressions of lithium hydride. Fiz. Tverd. Tela (St. Petersburg) 8, 1643–1645 (1966). (in Russian)

    Google Scholar 

  96. V.G. Plekhanov, Lattice dynamics of isotopically mixed crystals. Opt. Spectr. (St. Petersburg) 82, 95–124 (1997)

    Google Scholar 

  97. V.G. Plekhanov, Isotope effect on the lattice dynamics of crystals. Mater. Sci. Eng. R35, 139–237 (2001)

    CAS  Google Scholar 

  98. D.P. Schumacher, Polymorphies transition of LiH. Phys. Rev. 126, 1679–1684 (1962)

    CAS  Google Scholar 

  99. D.R. Stephens, E.M. Lilley, Compressions of isotopes lithium hydride. J. Appl. Phys. 39, 177–180 (1968)

    CAS  Google Scholar 

  100. Y. Kondo, K.J. Asaumi, Effect of pressure on the direct gap of LiH. J. Phys. Soc. Jpn. 57, 367–371 (1988)

    CAS  Google Scholar 

  101. K. Chandehari, A. Ruoff, Band gap and index refraction of CsH to 25 GPa. Solid State Commun. 95, 385–388 (1995)

    Google Scholar 

  102. W. Schnelle, E. Gmelin, Heat capacity of germanium crystals with different isotopic composition. J. Phys: Condens. Matter 13, 6087–6094 (2001)

    CAS  Google Scholar 

  103. M. Sanati, S.K. Estreicher, Specific heat and entropy of GaN. ibid 16, L327–L331 (2004)

    Google Scholar 

  104. J.M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  105. R. Berman, Thermal Conductions of Solids (Clarendon Press, Oxford, 1976)

    Google Scholar 

  106. M. Planck, Zur Theorie der Wärmestrahlung. Ann. Phys. 336, 758–768 (1910)

    Google Scholar 

  107. R.E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955)

    Google Scholar 

  108. I.Ya. Pomeranchuk, About thermal conductivity of dielectrics. J. Phys. (USSR) 6, 237–246 (1942)

    Google Scholar 

  109. D.G. Onn, A. Witek, Y.Z. Qiu et al., Some aspect of the thermal conductivity of isotopically enriched diamond single crystals. Phys. Rev. Lett. 68, 2806–2809 (1992)

    CAS  Google Scholar 

  110. J.R. Olson, R.O. Pohl, J.W. Vandersande et al., Thermal conductivity of diamond between 170 and 1200K and the isotopic effect. Phys. Rev. B47, 14850–14856 (1993)

    Google Scholar 

  111. M. Cardona, R.K. Kremer, M. Sanati et al., Measurements of the heat capacity of diamond with different isotopic composition. Solid State Commun. 133, 465–468 (2005)

    CAS  Google Scholar 

  112. J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)

    CAS  Google Scholar 

  113. A.P. Zhernov, A.V. Inyushkin, Kinetic coefficients in isotopically disordered crystals. Physics - Uspekhi (Moscow) 45, 573–599 (2002)

    Google Scholar 

  114. M. Omini, A. Sparavigna, Heat transport in dielectric solids with diamond structure. Nuovo Cimento D19, 1537–1563 (1997)

    Google Scholar 

  115. A. Sparavigna, Influence of isotope scattering on the thermal conductivity of diamond. Phys. Rev. B65, 064305-5 (2002), ibid, B67, 144305-4 (2003)

    Google Scholar 

  116. W.C. Capinski, H.J. Maris, S. Tamura, Analysis of the effect of isotope scattering on the thermal conductivity of crystalline silicon. Phys. Rev. B 59, 10105–10110 (1999)

    CAS  Google Scholar 

  117. M.G. Holland, Thermal conductivity, in Physics of III–V Compounds, in: Semiconductor and Semimetal, vol. 2, ed. by R.K. Willardson, A.C. Beer (Academic Press, New York, 1966), p. 3

    Google Scholar 

  118. J.W. Lyding, K. Hess, I.C. Kizilyalli, Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing. Apll. Phys. Lett. 68, 2526–2529 (1996)

    CAS  Google Scholar 

  119. G. London, The difference in molecular volume of isotopes. Z. Phys. Chem. Neue Folge 16, 3021–3029 (1958)

    Google Scholar 

  120. A.R. Ruffa, Thermal expansion and zer point displacement in isotopic lithium hydride. Phys. Rev. B 27, 1321–1325 (1983)

    CAS  Google Scholar 

  121. A.A. Berezin, A.M. Ibrahim, Effects of the diversity of stable isotopes on properties of materials. Mater. Chem. Phys. 19, 420–437 (1988)

    Google Scholar 

  122. R.C. Bushert, A.E. Merlin, S. Pace et al., Effect of isotope concentration on the lattice parameter of germanium perfect crystals. Phys. Rev. B 38, 5219–5221 (1988)

    Google Scholar 

  123. E.E. Shpilrain, K.A. Yakimovich, T.N. Mel’nikova, Thermal Properties of Lithium Hydride-Deuteride and their Solutions with Lithium (Energoatomizdat, Moscow, 1983). (in Russian)

    Google Scholar 

  124. J.C. Noya, C.P. Hrrero, R. Ramirez, Isotope dependence of the lattice parameter of germanium from path-integral Monte Carlo simulations. Phys. Rev. B 56, 237–243 (1997)

    CAS  Google Scholar 

  125. A. Kazimirov, J. Zegenhagen, M. Cardona, Isotopic mass and lattice constant X-ray standing wave measurements. Science 282, 930–932 (1998)

    CAS  Google Scholar 

  126. Y. Ma, J.S. Tse, Ab initio detrmination of crystal lattice constant and thermal expansion for germanium isotopes. Solid State Commun. 143, 161–165 (2007)

    CAS  Google Scholar 

  127. W. Banholzer, T. Anthony, Diamond properties as a function of isotopic composition. Thin Solid Films 212, 1–10 (1992)

    CAS  Google Scholar 

  128. H. Holloway, K.C. Hass, M.A. Tamor et al., Isotopic dependence of lattice constants of diamond. Phys. Rev. B 44, 7123–7126 (1991)

    CAS  Google Scholar 

  129. P. Pavone, S. Baroni, Dependence of the crystal lattice constant on isotopic composition. Solid State Commun. 90, 295–297 (1994)

    CAS  Google Scholar 

  130. H. Holloway, K.C. Hass, M.A. Tamor et al., Isotopic dependence of lattice constants of diamond. ibid, B 45, 6353E (1992)

    Google Scholar 

  131. W.B. Zimmerman, Lattice constant dependence on isotopic composition in the \(^{7}\)Li(H, D) system. Phys. Rev. B 5, 4704–4707 (1972)

    Google Scholar 

  132. T. Yamanaka, S. Morimoto, H. Kanda, Influence of the isotope ratio on the lattice constant of diamond. ibid B49, 9341–9343 (1994)

    Google Scholar 

  133. R. Vogelgesang, A.K. Ramdas, S. Rodriguez et al., Brillouin and Raman in natural and isotopically controlled diamond. Phys. Rev. B 54, 3989–3999 (1996)

    CAS  Google Scholar 

  134. N. Garo, A. Cantarero, T. Ruf et al., Dependence of the lattice parameters and energy gap of zinc-blende-type semiconductors on isotopic mass. Phys. Rev. B 54, 4732–7440 (1996)

    Google Scholar 

  135. A. Debernardi, M. Cardona, Isotopic effect on the lattice constant in compound semiconductors by perturbation theory: An ab initio calculation. Phys. Rev. B 54, 11305–11310 (1996)

    CAS  Google Scholar 

  136. H. Bilz, W. Kress, Phonon Dispersion Relations in Insulators (Springer, Berlin, 1979)

    Google Scholar 

  137. H. Kressel (ed.), Semiconductor Devices for Optical Communications: Topics in Applied Physics, vol. 39 (Springer, Berlin, 1982)

    Google Scholar 

  138. P.C. Becker, M.R.X. de Barras, in Materials for Optoelectronics, ed. by M. Quilec (Kluver Academic Publishers, Boston, 1996)

    Google Scholar 

  139. A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman and Hall Medical, London, 1996)

    Google Scholar 

  140. D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1972)

    Google Scholar 

  141. W.B. Allan, Fibre Optics Theory and Practice (Plenum Press, New York, 1973)

    Google Scholar 

  142. N.S. Kapany, Fiber Optics (Academic Press, New York, 1967)

    Google Scholar 

  143. J.A. Arnaud, Beam and Fibre Optics (Academic Press, New York, 1976)

    Google Scholar 

  144. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974)

    Google Scholar 

  145. J.E. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979)

    Google Scholar 

  146. R.W. Pohl, Introduction into Optics (Science, Moscow, 1947). (in Russian)

    Google Scholar 

  147. L.M. Zhuravleva, V.G. Plekhanov, Method of Fiber’s Manufacture. Patent of Russian Federation N 2302381, 10 (2007)

    Google Scholar 

  148. V.G. Plekhanov, Applications of isotope effects in solids. J. Mater. Sci. 38, 3341–3429 (2003)

    CAS  Google Scholar 

  149. A. Jorio, G. Dresselhaus, M.S. Dresselhaus (eds.), Carbon Nanotubes. Topics Applied Physics, vol. 111 (Springer, Heidelberg, 2008)

    Google Scholar 

  150. M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes. Adv. Phys. 49, 705–814 (2000)

    CAS  Google Scholar 

  151. J.C. Charlier, P.C. Eklund, A.C. Ferrari, Electron and phonon properties of graphene: their relationship with carbon nanotubes, in [157], pp. 673–709

    Google Scholar 

  152. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physics Properties (Imperial College Press, London, 2004)

    Google Scholar 

  153. V.G. Plekhanov, Manifestation of the strong nuclear interactions in the isotope-induced band-gap-opening of graphene, in Horizons in World Physics, vol. 281 (Nova Science Publishers, Inc., New York, 2013), pp. 197–202

    Google Scholar 

  154. M.Y. Han, B. Ozyilmaz, Y. Zhang, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805-4 (2007)

    Google Scholar 

  155. L.A. Ponomarenko, F. Schedin, M. Katsnelson et al., Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008)

    CAS  Google Scholar 

  156. A. Savchenko, Transforming graphene. Science 323, 589–590 (2009)

    CAS  Google Scholar 

  157. V.G. Plekhanov, Nuclear technology creation the quantum dots in graphene, in Transactions Humanitar Institute, Tallinn, 2011, pp. 66–70 (in Russian); V.G. Plekhanov, 2015 (unpublished results)

    Google Scholar 

  158. See Special Issue Nature (2009)

    Google Scholar 

  159. K.F. Mak, C.H. Lui, T.F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405-4 (2009)

    Google Scholar 

  160. E.V. Castro, K.S. Novoselov, S.V. Morozov, et al., Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. ibid 99 216802-4 (2007)

    Google Scholar 

  161. ZhH Ni, T. Yu, Y.H. Lu, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 3, 483–492 (2009)

    CAS  Google Scholar 

  162. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–629 (1947)

    CAS  Google Scholar 

  163. V.G. Plekhanov, Isotopical band-gap opening in graphene. Universal J. Phys. Appl. 10, 16–21 (2016)

    Google Scholar 

  164. A.K. Ramdas, S. Rodriguez, Lattice vibrations and electronic excitations in isotopically controlled diamonds. Phys. Stat. Sol. (b) 215, 71–80 (1999)

    Google Scholar 

  165. S. Prawer, R.J. Nemanich, Raman spectroscopy of diamond and doped diamond. Phil. Transac. R. Soc. (Lond.) 362, 2537–2565 (2004)

    CAS  Google Scholar 

  166. M.S. Dresselhaus, G. Dresselhaus, M. Hofman, Raman spectroscopy as a probe of graphene and carbon nanotubes. ibid, 366, 231–236 (2008)

    Google Scholar 

  167. C. Casiraghi, A. Hartschuh, H. Qian et al., Raman spectroscopy of graphene edges. Nano Lett. 9, 1433–1441 (2009)

    CAS  Google Scholar 

  168. Sh Chen, Q. Wu, C. Mishra, Thermal properties of isotopically engineered graphene. Nat. Mater. 11, 203–207 (2012)

    CAS  Google Scholar 

  169. A. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    CAS  Google Scholar 

  170. M. Huang, H. Yan, C. Chen et al., Raman spectroscopy of graphene under uniaxial stress: phonon softening and determination of crystallographic orientation. Proc. Natl. Acad. Sci. USA 106, 7304–7315 (2009)

    CAS  Google Scholar 

  171. M. Farjam, H. Rafii-Tabar, Comment on “Band structure engineering of graphene by strain: First-principles calculations”. Phys. Rev. B 80, 167401-3 (2009)

    Google Scholar 

  172. T.M. Mohiuddin, A. Lombarto, R.R. Nair et al., Uniaxial strain in graphene by Raman spectroscopy: G peak splitting. Grűneisen parameter and sample orientation. ibid, B 79, 205433-8 (2009)

    Google Scholar 

  173. S.D. Costa, C. Fantini, A. Righi et al., Resonant Raman spectroscopy on enriched \(^{13}\)C carbon nanotubes. Carbon 49, 4919–4723 (20011)

    Google Scholar 

  174. J.F. Rodriguez-Nieva, R. Saito, S.D. Costa et al., Effect of \(^{13}\)C doping on the optical phonon modes in graphene: localization and Raman spectroscopy. Phys. Rev. B 85, 245406-8 (2012)

    Google Scholar 

  175. S. Bernard, E. Whiteway, V. Yu et al., Probing the experimental phonon dispersion of graphene using \(^{12}\)C and \(^{13}\)C isotopes. ibid, B 86, 085409-5 (2012)

    Google Scholar 

  176. E. del Corro, M. Kolbac, C. Fantini et al., Isotopic \(^{12}\)C/\(^{13}\)C effect on the resonant Raman spectrum of twisted bilayer graphene. ibid, B 88, 155436-5 (2013)

    Google Scholar 

  177. Z.C. Kun, L.Q. YU, T. Bo, et al., Isotope effect of the phonons mean free path in graphene by micro - Raman measurement, Science China. Phys. Mech. Astro. 57, 1817–1821 (2014)

    Google Scholar 

  178. K.C. Hass, M.A. Tamor, T.R. Anthony, W.F. Banholzer, Lattice dynamics and Raman spectra of isotopically mixed diamons. Phys. Rev. B 45, 7171–7182 (1992)

    CAS  Google Scholar 

  179. E.G. Browman, Y.M. Kagan, Phonons in non-transition metals, in Dynamical Properties of Solids, vol. 1, ed. by G.K. Horton, A.A. Maradudin (North-Holland Publishing Company, 1974), Chapter 4

    Google Scholar 

  180. S. Bae, H. Kim, Y. Lee, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)

    CAS  Google Scholar 

  181. K.F. Mak, L. Ju, T.F. Heinz, Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012)

    CAS  Google Scholar 

  182. V.G. Kravets, A.N. Grigorenko, R.R. Nair, Spectroscopic ellipsometry of graphene and exciton-shifted in a graphene transistor. Phys. Rev. B 81, 155413–7 (2010)

    Google Scholar 

  183. H.A. Becerril, J. Man, Z. Liu, Evaluation of selection-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–469 (2008)

    CAS  Google Scholar 

  184. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–915 (2004)

    CAS  Google Scholar 

  185. Z. Chen, B. Cotterell, W. Wang et al., A mechanical assestment of flexible optoelectronic devices. Thin Solid Films 394, 201–206 (2001)

    Google Scholar 

  186. Z.Y. Yin, S.X. Wu, X.Z. Zhou et al., Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar sells. Small 6, 307–310 (2010)

    CAS  Google Scholar 

  187. Z.Y. Yin, S.Y. Sun, T. Salim et al., Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4, 5263–5267 (2010)

    CAS  Google Scholar 

  188. X. Wang, L.J. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–329 (2008)

    CAS  Google Scholar 

  189. I. Jung, D. Dikin, S. Park et al., Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J. Phys. Chem. 112, 20264–20268 (2008)

    CAS  Google Scholar 

  190. J.D. Fowler, M.J. Allen, V.C. Tung et al., Practical chemical sensors from chemically derived graphene. ACS Nano 3, 301–305 (2008)

    Google Scholar 

  191. G. Lu, L.E. Ocola, J. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 94, 083111–4 (2009)

    Google Scholar 

  192. Q. Liu, Z.F. Liu, X.Y. Zhong, Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv. Funct. Mater. 19, 894–900 (2009)

    CAS  Google Scholar 

  193. D. Pan, S. Wang, B. Zhoo et al., Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3141 (2009)

    Google Scholar 

  194. E. Yoo, J. Kim, H.-s. Zhou et al., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2281 (2008)

    Google Scholar 

  195. L.E.F. Foa Torres, S. Roche, J.-C. Charlier, Introduction to Graphene-Based Nanomaterials (Cambridge, Cambridge University Press, 2014)

    Google Scholar 

  196. Ah Castro Net, F. Guinea, N.M.R. Peres et al., The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Google Scholar 

  197. X. Du, I. Sachko, A. Barker et al., Approaching dallistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–497 (2008)

    CAS  Google Scholar 

  198. K. Novoselov, A. Geim, S. Morozov et al., Electric field effect in atomically thin carbon films. Science 306, 666–670 (2004)

    CAS  Google Scholar 

  199. W.S. Hummers, R.E. Offeman, Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339–1343 (1958)

    CAS  Google Scholar 

  200. W.W. Cai, R.D. Piner, F.J. Stademann et al., Synthesis and solid state NMR structural characterization of \(^{13}\)C labelled graphite oxide. Science 321, 1815–1816 (2008)

    CAS  Google Scholar 

  201. W. Gao, L.B. Alemany, L. Ci et al., New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–405 (2009)

    CAS  Google Scholar 

  202. J.H. Chen, W.G. Cullen, C. Jang et al., Defect scattering in graphene. Phys. Rev. Lett. 102, 236805–4 (2009)

    Google Scholar 

  203. Z. Luo, P.M. Vora, E.J. Mele et al., Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett. 94, 111909–3 (2009)

    Google Scholar 

  204. A. Nourbaksch, M. Cantoro, T. Vosch et al., Band gap opening in oxygen plasma treated graphene. Nanotechnol. 21, 435203 (2010)

    Google Scholar 

  205. H. Huang, Z. Li, J. She et al., Oxygen density dependent band gap of reduced graphene oxide. J. Appl. Phys. 111, 054317–4 (2012)

    Google Scholar 

  206. V. Singh, D. Joung, L. Zhai, Graphene based materials: past, present and future. Prog. Mat. Sci. 56, 1178–1271 (2011)

    CAS  Google Scholar 

  207. A.C. Ferrari, J.C. Meyer, V. Scardaci et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401–4 (2006)

    CAS  Google Scholar 

  208. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000)

    CAS  Google Scholar 

  209. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous and diamondlike carbon. Phys. Rev. B 64, 075414–7 (2001)

    Google Scholar 

  210. T. Nakajima, N. Watanabe, Graphite Fluorides and Carbon-Fluorine Compounds (CRC, Roca Baton, 1991)

    Google Scholar 

  211. J. Ito, J. Nakamura, A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet. J. Appl. Phys. 103, 113712–5 (2008)

    Google Scholar 

  212. J.O. Sofo, A.S. Chauhari, Grpaphane Barber, A two-dimensional hydrocarbon. Phys. Rev. B 75, 153401–4 (2007)

    Google Scholar 

  213. G.A. Olah, A. Molnar, Hydrocarbon Chemistry (Wiley-Inerscience, Hoboken, 2003)

    Google Scholar 

  214. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  215. V.G. Plekhanov, Isotope-based materials science. Universal J. Mat. Sci. 1, 87–147 (2013)

    Google Scholar 

  216. R.P. Feynman (1959), http://www.zyvex.com/nanotech/feynman.html

  217. G. Binning, H. Rohrer, Ch. Gerber et al., Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–60 (1982)

    CAS  Google Scholar 

  218. G. Binning, H. Rohrer, Ch. Gerber et al., Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–181 (1982)

    Google Scholar 

  219. J.A. Stroscio, W.J. Kaiser (eds.), Scanning Tunneling Microscopy (Academic Press, Boston, 1993)

    Google Scholar 

  220. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  221. J.S. Blakemore, Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123–R181 (1982)

    CAS  Google Scholar 

  222. S.M. Sze (ed.), High-Speed Semiconductor Devices (Wiley, New York, 1990)

    Google Scholar 

  223. M.A. Kastner, The single electron transistor. Rev. Mod. Phys. 64, 849–858 (1992)

    Google Scholar 

  224. Y. Ono, A. Fujiwara, K. Nishiguchi et al., Manipulation and detection of single electrons for future information processing. J. Appl. Phys. 97, 031101–19 (2005)

    Google Scholar 

  225. K.K. Likharev, T. Claeson, Single electronics. Sci. Am. (1991). (S.M)

    Google Scholar 

  226. H. Grabert, M.H. Devored (eds.), Single Charge Tunneling: Coulomb Blackade Phenomena in Nanostructures, NATO ASI Series B (Plenum Press, New York, 1992)

    Google Scholar 

  227. K. Barnham, D. Vvedensky (eds.), Low-Dimensional Semiconductor Structures (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  228. M.A. Storcio, M. Dutta, Phonons in Nanostructures (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  229. A. Kiravittaya, Rastelli, O.G. Schmidt, Advances quantum dot configurations. Rep. Prog. Phys. 72, 046502–046534 (2009)

    Google Scholar 

  230. K. Seeger, Semiconductor Physics (Springer, New York, 1973)

    Google Scholar 

  231. I.I. Abramov, E.G. Novik, Phys. Tech. Semic 33, 1388–1394 (1999). (in Russian)

    Google Scholar 

  232. N. Gerasimenko, Ju. Parhomenko, Silicon-Material of Nanoelectronics (Moscow, Technosphera, 2007). (in Russian)

    Google Scholar 

  233. A.V. Eletskii, Mechanical properties of carbon nanostructures and related materialls. Uspekhi Fiz. Nauk 177, 233–274 (2007). (in Russian)

    Google Scholar 

  234. Ch. Kittel, Thermal Physics (Wiley, New York, 1969)

    Google Scholar 

  235. D. Bimberg, M. Grundman, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999)

    Google Scholar 

  236. J. Bylander, T. Duty, P. Delsing, Current measurement by real time counting of single electrons. Nature 434, 6199–6211 (2005)

    Google Scholar 

  237. V.G. Plekhanov, Isotope-Based Quantum Information (Springer, Heidelberg, 2012)

    Google Scholar 

  238. H. Schoeller, G. Schoen, Mesoscopic quantum transport: resonant tunneling in the presence strong Coulomb interaction. Phys. Rev. B 50, 18436–18442 (1994)

    CAS  Google Scholar 

  239. L.M. Zhuravleva, V.G. Plekhanov, Isotopetronics: fundamentals and applications, in Procedings of the International Conference (Sophia, Bulgaria, 2012), pp. 23–36

    Google Scholar 

  240. D.V. Averin, A.A. Odintsov, S.A. Vyshenskii, Ultimate accuracy of single-electron dc current standards. J. Appl. Phys. 73, 1297 (1993)

    CAS  Google Scholar 

  241. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman et al., Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–23 (2003)

    Google Scholar 

  242. S.M. Reiman, M. Manninen, Electronic structure of quantum dots. ibid 74, 1283-1342 (2002)

    Google Scholar 

  243. P. Recher, B. Trauzel, Quantum dots and spin qubits in graphene. Nanotechnology 21, 302001–19 (2010)

    Google Scholar 

  244. A.V. Rozhkov, G. Giavaras, Y.P. Bliokh, Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport. Phys. Rep. 503, 77–114 (2011)

    CAS  Google Scholar 

  245. J. Güttinger, F. Molitor, C. Stampfer et al., Transport through graphene quantum dots. Rep. Prog. Phys. 75, 126502–24 (2012)

    Google Scholar 

  246. S. Das Sarma, S. Adam, E.H. Hwang et al., Electronic properties in two dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)

    CAS  Google Scholar 

  247. J.S. Buch, Y. Yaish, M. Brink et al., Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005)

    Google Scholar 

  248. C. Stampfer, J. Güttinger, F. Molitor et al., Tunable Coulomb blockade in nanostructured graphene. Appl. Phys. Lett. 92, 012102 (2008)

    Google Scholar 

  249. S. Schnez, F. Molitor, C. Stampfer et al., Observation of excited states in graphene quantum dot. ibid 94, 012107-5 (2009)

    Google Scholar 

  250. W.N. Carr, Characteristics of a GaAs spontaneous infrared source with 40 percent efficience. IEEE Electron Dev. ED-12, 531–535 (1965)

    Google Scholar 

  251. H.C. Casey, M.B. Panish, Heterostructure Lasers (Academic, New York, 1978)

    Google Scholar 

  252. P.S. Zoty, Quantum Well Lasers (Academic, Boston, 1993)

    Google Scholar 

  253. Y. Arakawa, in Confined Electrons and Photons: New Physics and Applications, Semiconductor Nano-Structure Lasers: Fundamentals and Applications. NATO Series B: Physics, vol. 340, ed. by E. Burstein, C. Weisbuch (New York, Plenum Press, 1995), pp. 647–673

    Google Scholar 

  254. L.A. Colderen, S.W. Corzine, Diode Lasers and Photonic Integrated Cicuits (Wiley, New York, 1995)

    Google Scholar 

  255. N.N. Ledentsov, V.M. Ustinov, V.A. Shchukin et al., Quantum dot heterostructures: Fabrication, properties, lasers. Fiz. and Teh. Polup. (Physics and Technics of Semicond.) 32, 385–410 (1998). (in Russian)

    CAS  Google Scholar 

  256. J. Faist, F. Capasso, D.L. Sivco et al., Quantum cascade laser. Science 264, 553–556 (1994)

    CAS  Google Scholar 

  257. M. Beck, D. Hofstetter, T. Allen, Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2002)

    CAS  Google Scholar 

  258. Z. Yin, X. Tang, A review of energy band gap engineering in III–V semiconductor alloys for mid-infrared laser applications. Solid St. Electron. 51, 6–15 (2005)

    Google Scholar 

  259. V.M. Ustinov, A.E. Zukov, AYu. Egorov, N.A. Maleen, Quantum Dot Lasers (Oxford University Press, Oxford, 2003)

    Google Scholar 

  260. J.M. Martinez-Duart, R.J. Martin-Palme, F. Aguello-Rueda, Nanotechnology for Microelectronics and Optoelectronics (Amsterdam, Elsevier, 2006)

    Google Scholar 

  261. E. Burstein, C. Weisbuch, Confined Electrons and Phonons: New Physics and Applications (Plenum Press, New York, 1995)

    Google Scholar 

  262. F. Rossi, E. Molinari, The dominant role of Coulomb correlation. Phys. Rev. B 53, 16462–16473 (1996)

    CAS  Google Scholar 

  263. L. Sirgu, Y. Oberli, L. Deriorgi et al., Excitonic lasing in semiconductor quantum wires. Phys. Rev. B 61, R10575–10584 (2000)

    Google Scholar 

  264. M.H. Huang, S. Mao, H. Feick et al., Room temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2000)

    Google Scholar 

  265. Y. Matsishima, S. Akiba, K. Sakaki, High-speed-response InGaAs/InP heterostructure avalanche photodiode with InGaAsP buffer layers. Electron. Lett. 18, 945–946 (1982)

    Google Scholar 

  266. J.C. Campbell, W.T. Tsang, G.J. Qua, High-speed InP/InGaAsP/InGaAs avalanche photodiode grown by chemical beam epitaxy. IEEE QE 24, 496–500 (1988)

    CAS  Google Scholar 

  267. L.E. Tarof, D.G. Knight, K.E. Fox et al., Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery. Appl. Phys. Lett. 57, 670–672 (1990)

    CAS  Google Scholar 

  268. S. Lindsay, Introduction to Nanoscience (Oxford University Press, New York, 2009)

    Google Scholar 

  269. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000)

    Google Scholar 

  270. O. Morsch, Quantum Bits and Quantum Secrets: How Quantum Physics Revolutionizing Codes and Computers (Wiley, Weinham, 2008)

    Google Scholar 

  271. B. Schumacher, Quantum coding. Phys. Rev. A 51, 2738–2747 (1995)

    CAS  Google Scholar 

  272. V.G. Plekhanov, Quantum information and quantum computation, in Transaction of Computer Science College (Tallinn, 2004), pp. 161–282. (in Russian)

    Google Scholar 

  273. B.B. Kadomtsev, Dynamics and Information (UFN, Moscow, 1997). (in Russian)

    Google Scholar 

  274. D.P. DiVincenzo, The physical implementation of quantum computation. Fortschr. der Physik (Prog. Phys.) 48, 771–783 (2000)

    Google Scholar 

  275. C.A. Perez-Delgado, P. Kok, Quantum computers: definition and implementation. Phys. Rev. A 83, 012303–012315 (2011)

    Google Scholar 

  276. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965)

    Google Scholar 

  277. M. Lacham, M.E. Newman, C. Moore, Why any sufficiently advanced technology is indistinguishable from noise. Am. J. Phys. 72, 1290–1293 (2004)

    Google Scholar 

  278. P.A.M. Dirac, The Principles of Quantum Mechanics (OxfordUniversity Press, Oxford, 1958)

    Google Scholar 

  279. A. Barenco, C.H. Bennett, R. Cleve et al., Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    CAS  Google Scholar 

  280. S.L. Braunstein, Quantum Computations, Encyclopedia of Applied Physics, Update (Wiley, New York, 1999), pp. 239–256

    Google Scholar 

  281. V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Prog. Mat. Sci. 51, 287–426 (2006)

    CAS  Google Scholar 

  282. D. Aharonov, Quantum Computation, in Annual Reviews of Computational Physics VI, ed. by D. Stauffer (World Scientific, Singapore, 1998), pp. 143–184

    Google Scholar 

  283. D. Aharonov, Adiabatic quantum computer. SIAM J. Comput. 37, 166–194 (2007)

    Google Scholar 

  284. D. Aharonov, Adiabatic Quantum Computer, Lanl arXiv:quant-ph/0405098

  285. D. DiVincenzo, Topics in quantum computers, in Mesoscopic Electron Transport. NATO ASI Series E, vol. 345, ed. by L. Sohn, L. Kouwenhoven, G. Schon, (Dordrecht, Kluwer, 1997), p. 657

    Google Scholar 

  286. D. DiVincenzo, Topics in Quantum Computers, vol. 1 (1996), p. 12, arXiv:cond-mat/9612125

  287. D. DiVincenzo, Quantum computers and quantum coherence. J. Magn. Magn. Mats. 200, 202–216 (1999)

    CAS  Google Scholar 

  288. H.-K. Lo, T. Spiller, S. Popescu (eds.), Introduction to Quantum Computation and Quantum Information (World Scientific, London, 1998)

    Google Scholar 

  289. T. Toffoli, Reversible computing, in Automata, Languages and Programming, Seventh Colloqium, vol. 84, Lecture Notes in Computer Science, ed. by J. de Bakker, J. van Leeuven (Springer, Berlin, 1980), pp. 632–644

    Google Scholar 

  290. T. Toffoli, Bicontinuous extensions of invertible combinatorial functions. Math. Syst. Theory 14, 13–23 (1981)

    Google Scholar 

  291. Pellizari T., Quantum computers, error-correction and networking: quantum optical approaches, in [297], pp. 270–311

    Google Scholar 

  292. J. Grashka, Quantum Computing (McGraw-Hill, New York, 1999)

    Google Scholar 

  293. D. Deutsch, Quantum computational networks. Proc. R. Soc. (Lond.) A 425, 73–90 (1989)

    Google Scholar 

  294. J.W. Emsley, J.C. Lindon, NMR Spectroscopy Using Liquid Crystals Solvents (Pergamon Press, Oxford, 1975)

    Google Scholar 

  295. J. Stolze, D. Suter, Quantum Computing (A Short Course from Theory to Experiment) (Wiley, Weiheim, 2008)

    Google Scholar 

  296. L.M.K. Vandersypen, I.L. Chuang, NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2004)

    Google Scholar 

  297. M. Levitt, Spin Dynamics (Basics of Nuclear Magnetic Resonance (Wiley, New York, 2001)

    Google Scholar 

  298. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987)

    Google Scholar 

  299. V.G. Plekhanov, Isotopes in Quantum Information (Palmarium Academic Publishing, Saarbrücken, 2013). (in Russian)

    Google Scholar 

  300. A. Ekert, P. Hayden, H. Inamori, Basic Concepts in Quantum Computation, Lanl, arXiv:quant.ph/0011013

  301. I.L. Chuang, N. Gershenfeld, M. Kubinec, Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408–3411 (1998)

    CAS  Google Scholar 

  302. I.L. Chuang, N. Gershenfeld, M. Kubinec, Bulk quantum computation with NMR: theory and experiment. Proc. R. Soc. (Lond.) A 454, 447–467 (1998)

    Google Scholar 

  303. L. Vandersypen, M. Steffen, G. Breita et al., Experimental realization of Shor’s quantum factoring algorithm using NMR. Nature 414, 883–887 (2001)

    CAS  Google Scholar 

  304. D. Esteve, J.M. Raimond, J. Dalibard (eds.), QuantumCoherence and Information Processing (Elsevier, London, 2004)

    Google Scholar 

  305. I. Bloch, Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–27 (2005)

    CAS  Google Scholar 

  306. T.C. Ralph, Quantum optical systems for the implementation of quantum information processing. Rep. Prog. Phys. 69, 853–898 (2006)

    Google Scholar 

  307. A.M. Steane, The ion trap quantum information processor. Appl. Phys. B 64, 623–642 (1997)

    CAS  Google Scholar 

  308. H. Häffner, C.F. Roos, R. Blatt, Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)

    Google Scholar 

  309. W. Paul, Electromagnetic traps for a charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990)

    CAS  Google Scholar 

  310. J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    CAS  Google Scholar 

  311. C. Monroe, D.M. Meekhof, B.E. King et al., Demonstration of a universal quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995)

    CAS  Google Scholar 

  312. N. Yanofsky, M. Manucci, Quantum Computing for Computer Scientists (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  313. D.J. Wineland, M. Barret, J. Britton et al., Quantum information processing with trapped ions. Phil. Trans. R. Soc. (Lond.) A 361, 1349–1362 (2003)

    Google Scholar 

  314. T. Spiller, Quantum information processing: cryptography, computation, and teleportation. Proc. IEEE 84, 1719–1746 (1996)

    Google Scholar 

  315. V.V. Schmidt, Introduction in Physics of Superconductors (Science, Moscow, 1982). (in Russian)

    Google Scholar 

  316. Yu. Makhlin, G. Schön, A. Shnirman, Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)

    Google Scholar 

  317. J.H. Platenberg, P.C. de Groot, C.J.P.M. Harmands, Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature (London) 447, 836–839 (2007)

    Google Scholar 

  318. P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, Lanl, arXiv:quant-ph/9508027

  319. P. Shor, Polynomial-time algorithms for prime factorization and dicrete logarithms on a quantum computer. IEEE Press SIAM J. Comput. 26, 1484–1509 (1997)

    Google Scholar 

  320. K.A. Valiev, A.A. Kokin, Quantum Computers: Hopes and Reality (RC Dynamics, Moscow, 2001). (in Russian)

    Google Scholar 

  321. L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the 28th ACM Symposium on Theory of Computation (Association for Computing, Machinery, New York, 1999), pp. 212–219

    Google Scholar 

  322. L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Lanl, arXiv:quant-ph/9605043

  323. L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    CAS  Google Scholar 

  324. P. Benioff, The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by turing machine. J. Stat. Phys. 22, 563–591 (1980)

    Google Scholar 

  325. P. Benioff, Quantum mechanical Hamiltonian models of Turing machine. ibid 29, 515–546 (1982)

    Google Scholar 

  326. P. Benioff, Quantum mechanical models of turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1681–1684 (1982)

    Google Scholar 

  327. P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, 1994), pp. 124–134

    Google Scholar 

  328. A.M. Steane, Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    CAS  Google Scholar 

  329. J. Preskill, Reliable quantum computers. Proc. R. Soc. (Lond.) A 454, 385–410 (1998)

    Google Scholar 

  330. B.E. Kane, Silicon-based quantum computation, Lanl, arXiv:quant-ph/0003031

  331. B.E. Kane, Silicon-based quantum computation. Fortschr. Phys. 48, 1023–1041 (2000)

    CAS  Google Scholar 

  332. A.M. Tyryshkin, S.A. Lyon, A.V. Astashkin, A.M. Raitsining, Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207–4 (2003)

    Google Scholar 

  333. D.K. Wilson, G. Feher, Electron spin resonance on donors in silicon. Phys. Rev. 124, 1068–1083 (1961)

    CAS  Google Scholar 

  334. B.E. Kane, N.S. McAlpine, A.S. Dzurak, B.G. Clark, Single spin measurement using single electron transistors to probe two-electron systems. Phys. Rev. B 61, 2961–2972 (2000)

    CAS  Google Scholar 

  335. A.J. Skinner, M.E. Davenport, B.E. Kane, Hydrogenic spin quantum computing in silicon. Phys. Rev. Lett. 90, 087901–087904 (2003)

    Google Scholar 

  336. R. Vrijen, E. Yablonovich, K. Wang, Electron spin resonance transistors for quantum computing in Silicon-Germanium heterostructures. Phys. Rev. A 62, 12306–12309 (2000)

    Google Scholar 

  337. I. Shlimak, V.I. Safarov, I. Vagner, Isotopically engineered Si/SiGe nanostructures as basic elements for a nuclear spin quantum computer. J. Phys. Condens. Matter 13, 6059–6065 (2001)

    CAS  Google Scholar 

  338. I. Shlimak, V. Ginodman, A. Butenko et al., Electron transport in a slot-gate Si MOSFET, Lanl, arXiv:cond-mat./0803.4432

  339. I. Shlimak, I. Vagner, Quantum information processing based on \(^{31}\)P nuclear spin qubits in a qusi-one-dimensional \(^{28}\)Si nanowire. Phys. Rev. B 75, 045336–6 (2007)

    Google Scholar 

  340. F. Schäffler, High-electron-mobility Si/SiGe heterostructures: influence of the relaxed buffer layer. Semicond. Sci. Technol. 7, 260–267 (1992)

    Google Scholar 

  341. V.G. Plekhanov, Isotopes in Quantum Information, Preprint N 2 of Computer Science College (Tallinn, 2007). (in Russian)

    Google Scholar 

  342. V.G. Plekhanov, Manifestation and origin of the isotope effect, Lanl, arXiv:gen.phys.0907.2024

  343. V.G. Plekhanov, Isotope Effect: Physics and Applications (Palmarium Academic Publishing, Saarbrücken, 2014). (in Russian)

    Google Scholar 

  344. Special issue of Solid State Communications, 149 (2009)

    Google Scholar 

  345. A. Olaya-Castro, N.F. Johnson, Quantum information processing in nanostructures, Lanl, arXiv/quant-ph/0406133

    Google Scholar 

  346. D. Gammon, D.G. Steel, Optical studies of single quantum dots. Phys. Today 55, 36–41 (2002)

    CAS  Google Scholar 

  347. L. Quiroga, N.F. Johnson, Entangled Bell and Greenberg-Horne-Zeilinger state of excitons in coupled quantum dots. Phys. Rev. 83, 2270–2273 (1999)

    CAS  Google Scholar 

  348. D.D. Awschalom, L.C. Dassett, A.S. Dzurak, Quantum spintronics: engineering and manipulation atom-like spins in semiconductors. Science 339, 1174–1179 (2013)

    CAS  Google Scholar 

  349. A.M. Stoneham, A.J. Fisher, P.T. Greenland, Optically driven silicon-based quantum gates with potential for high-temperature operation. J. Phys. Condens. Matter 15, L447–L451 (2003)

    CAS  Google Scholar 

  350. K. Saeedi, S. Simmons, J.Z. Salvail, Room temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013)

    CAS  Google Scholar 

  351. S.Y. Kilin, Diamond-based quantum information technologies, in Physics, Chemistry and Applications of Nanostructure (World Scientific, Singapore, 2007), pp. 3–14

    Google Scholar 

  352. W.F. Koehl, B.B. Buckley, F.J. Ytrtnans et al., Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011)

    CAS  Google Scholar 

  353. D.D. Awschalom, R. Epstein, R. Hanson, The diamond age spintronics. Sci. Am. 84 (2007)

    Google Scholar 

  354. J. Wrachtrup, F. Jelezko, Processing quantum information in diamond. J. Phys.: Condens. Matter 18, S807–S824 (2006)

    CAS  Google Scholar 

  355. M.V. Guruder Dutt, L. Childress, L. Jiang et al., Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007)

    Google Scholar 

  356. N.B. Manson, J.P. Harrison, M.J. Sellars, The nitrogen-vacancy center in diamond re-visited (2008), arXiv:cond-mat/0601360

  357. M. Chen, M. Hirose, P. Cappelaro, Measurement of transverse hyperfine interaction by forbiden transitions. Phys. Rev. B 92, 020101-9 (2015)

    Google Scholar 

  358. L. du Preez, Thesis (University of the Witwatersrand, Johannesburg, 1965)

    Google Scholar 

  359. J.W. Steeds, S. Charles, T.J. Davis, Creation and mobility of self-interstitials in diamond. Diamond Rel. Mater. 8, 94–100 (1999)

    CAS  Google Scholar 

  360. T. Gaebel, M. Domhan, I. Popa, Room temperature coherent control of coupled single spins in solid. Nat. Phys. 2, 408–413 (2006)

    CAS  Google Scholar 

  361. E. Rej, T. Gaebel, T. Boele et al., Hyperpolarized nanodiamond with long relaxation time, arXiv:cond-mat/1502.06214

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir G. Plekhanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plekhanov, V.G. (2018). Application of Isotopic Materials Science in Bulk and Low-Dimensional Structures. In: Introduction to Isotopic Materials Science. Springer Series in Materials Science, vol 248. Springer, Cham. https://doi.org/10.1007/978-3-319-42261-9_4

Download citation

Publish with us

Policies and ethics