Skip to main content

Network Layer Control System: Consensus-Based Control, Theoretical Results and Performance Issues

  • Chapter
  • First Online:
Book cover Multilayer Control of Networked Cyber-Physical Systems

Part of the book series: Advances in Industrial Control ((AIC))

  • 849 Accesses

Abstract

In this chapter we formulate consensus-based algorithms operating at the network layer of the multilayer control system in Fig. 1.2. We first define the concept of bottleneck switches/router cooperation and then present a network queue fluid model of the heterogeneous sources accessing to multi-bottleneck network. Finally we formulate a consensus-based cooperative control law that: (i) stabilizes the network; (ii) balances the queue length at a specified set point value \(q_0\), reducing packet loss and improving link utilization; (iii) guarantees max–min fair allocation. The control algorithm can be implemented by end-to-end and hop-by-hop communication mechanism respectively over wired and wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Indeed it is strictly diagonally dominant matrix and hence for Ger\(\check{s}\)gorin theorem [32] is invertible.

References

  1. Imer, O.C., Compans, S., Basar, T., Srikant, R.: Available bit rate congestion control in ATM networks: developing explicit rate control algorithms. IEEE Control Syst. Mag. 21, 38 (2001)

    Google Scholar 

  2. Mascolo, S.: Smith’s principle for congestion control in high-speed data networks. IEEE Trans. Autom. Control 45, 358–364 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Quet, P.H., Ataslar, B., Iftar, A., Ozbay, H., Kang, T., Kalyanaraman, S.: Rate based flow controllers for communication networks in the presence of uncertain time varying multiple time delays. Automatica 38, 917–928 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sichitiu, M.L., Bauer, P.H.: Asymptotic stability of congestion control systems with multiple sources. IEEE Trans. Autom. Control 51, 292–298 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Iwatani, J., Yakoh, T.: A detection method of active queue management in communication paths. IEEE Int. Conf. Ind. Technol. (ICIT) (2010)

    Google Scholar 

  6. Hollot, C.V., Misra, V., Towsley, D., Gong, W.: Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Trans. Autom. Control 47, 945–959 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balakrishnan, H., Dukkipati, N., McKeown, N., Tomlin, C.J.: Stability analysis of explicit congestion control protocols. IEEE Commun. Lett. 11, 823–825 (2007)

    Article  Google Scholar 

  8. Kelly, F., Raina, G., Voice, T.: Stability and fairness of explicit congestion control with small buffers. ACM SIGCOMM Comput. Commun. Rev. (2008)

    Google Scholar 

  9. Dukkipati, N., Kobayashi, M., Zhang-Shen, R., McKeown, N.: Processor sharing flows in the internet. In: Thirteenth International Workshop on Quality of Service (2005)

    Google Scholar 

  10. Paek, J., Govindan, R.: RCRT: rate-controlled reliable transport for wireless sensor networks. Sensys. (2007)

    Google Scholar 

  11. Akan, O., Akyildiz, I.F.: Event-to-sink reliable transport in wireless sensor networks. IEEE/ACM Trans. Netw. 13, 1003–1016 (2005)

    Article  Google Scholar 

  12. Koutsopoulos, I., Tassiulas, L.: Optimal transmission rate control policies in a wireless link under partial state information. IEEE Trans. Autom. Control 55, 127–131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mastrocristino, T., Tesoriere, G., Grieco, L.A., Boggia, G., Palattella, M.R., Camarda, P.: Congestion control based on data-aggregation for wireless sensor networks. In: IEEE International Symposium on Industrial Electronics (2010)

    Google Scholar 

  14. Wirz, R., Marin, R., Ferre, M., Barrio, J., Claver, J.M., Ortego, J.: Bidirectional transport protocol for teleoperated rob. IEEE Trans. Ind. Electron. 56, 3772–3781 (2009)

    Article  Google Scholar 

  15. Yashiro, D., Yakoh, T., Ohnishi, K.: End-to-end flow control using PI controller for force control system over TCP/IP network. In: 7th IEEE International Conference on Industrial Informatics (2009)

    Google Scholar 

  16. Lu, Q., Han, Q.-L.: Cooperative control of a multi-robot system for odor source localization. IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society (2011)

    Google Scholar 

  17. Andaluz, V., Rampinelli, V.T.L., Roberti, F., Carelli, R.: Coordinated cooperative control of mobile manipulators. IEEE International Conference on Industrial Technology (2011)

    Google Scholar 

  18. Rezaee, H., Abdollahi, F.: Mobile robots cooperative control and obstacle avoidance using potential field. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2011)

    Google Scholar 

  19. Hu, S., Wang, H., Kwong, S., Kuo, C.J.: Novel rate-quantization model-based rate control with adaptive initialization for spatial scalable video coding. IEEE Trans. Ind. Electron. 59, 1673–1684 (2012)

    Article  Google Scholar 

  20. Corradini, M.L., Fossi, V., Giantomassi, A., Ippoliti, G., Longhi, S., Orlando, G.: Minimal resource allocating networks for discrete time sliding mode control of robotic manipulators. IEEE Trans. Ind. Inf. 8, 733–745 (2012)

    Article  Google Scholar 

  21. Chakareski, J.: In-network packet scheduling and rate allocation: a content delivery perspective. IEEE Trans. Multimed. 13, 1092–1102 (2011)

    Article  Google Scholar 

  22. Collotta, M., Bello, L.L, Toscano, E., Mirabella, O.: Dynamic load balancing techniques for flexible wireless industrial networks. In: IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society (2010)

    Google Scholar 

  23. Murray, R.M.: Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control 129 (2007)

    Google Scholar 

  24. Zhang, H., Lewis, F.L., Qu, Z.: Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Trans. Ind. Electron. 59, 3026–3041 (2012)

    Article  Google Scholar 

  25. Cheng, T.M., Savkin, A.V.: Decentralized control of mobile sensor networks for asymptotically optimal blanket coverage between two boundaries. IEEE Trans. Ind. Electron. 9, 365–376 (2013)

    Google Scholar 

  26. Zhan, J., Li, X.: Flocking of multi-agent systems via model predictive control based on position-only measurements. IEEE Trans. Ind. Inf. 9, 377–385 (2013)

    Article  Google Scholar 

  27. Takahashi, R., Kinoshita, H., Murata, T., Tamura, J., Sugimasa, M., Komura, A., Futami, M., Ichinose, M., Ide, K.: Output power smoothing and hydrogen production by using variable speed wind generators. IEEE Trans. Ind. Electron. 57, 485–493 (2010)

    Article  Google Scholar 

  28. Panagi, P., Polycarpou, M.M.: A coordinated communication scheme for distributed fault tolerant control. IEEE Trans. Ind. Inf. 9, 386–393 (2013)

    Article  Google Scholar 

  29. Zhang, N., Yang, M., Jing, Y., Zhang, S.: Congestion control for diffserf network using second-order sliding mode control. IEEE Trans. Ind. Electron. 56, 3330–3336 (2009)

    Article  Google Scholar 

  30. Das, A.K., Fierro, R., Kumar, R.V., Ostrowski, J.P., Spletzer, J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18, 813–825 (2002)

    Article  Google Scholar 

  31. Kelly, F., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks:shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 74, 237–252 (1998)

    Article  MATH  Google Scholar 

  32. Horn R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  33. Desoer, C.A., Yang, Y.T.: On the generalized Nyquist stability criterion. IEEE Trans. Autom. Control 25, 187–196 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mohar, B.: The Laplacian spectrum of graphs. Graph theory, combinatorics, and applications. Graph Theory Comb. Appl. 2 (1991)

    Google Scholar 

  35. Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power-laws and the AS-level internet topology. IEEE/ACM Trans. Netw. 11, 514–524 (2003)

    Article  MATH  Google Scholar 

  36. Ohkubo, J., Tanaka, K., Horiguchi, T.: Generation of complex bipartite graphs by using a preferential rewiring process. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (2005)

    Google Scholar 

  37. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  38. Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabato Manfredi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manfredi, S. (2017). Network Layer Control System: Consensus-Based Control, Theoretical Results and Performance Issues. In: Multilayer Control of Networked Cyber-Physical Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-41646-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41646-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41645-8

  • Online ISBN: 978-3-319-41646-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics