Skip to main content

Air Pollution and the Skin Health

  • Chapter
  • First Online:
Dermatology in Public Health Environments

Abstract

This chapter discusses the importance of air pollution in human health, outlining its relationship with cutaneous tegument and in particular with early aging, atopic dermatitis, urticaria, acne, melasma, and skin cancer. Aspects of epidemiology and physiopathology of such associations are discussed. Preventive medical interventions are proposed to improve the population’s quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Xinwei L, Xiaolan Z, Loretta YL, Hao C. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ Res. 2014;128:27–34.

    Article  CAS  Google Scholar 

  2. World Health Organization (WHO). WHO’s ambient air pollution database – update 2014. 2014. Available from: www.who.int/phe/health_topics/outdoorair/databases/AAP_database results2014.pdf. Cited 2016 Aug 19.

  3. Molina MJ, Molina LT. Megacities and atmospheric pollution. J Air Waste Manage Assoc. 2004;54(6):644–80.

    Article  CAS  Google Scholar 

  4. Gurjar BR, Butler TM, Lawrence MG, Lelieveld J. Evaluation of emissions and air quality in megacities. Atmos Environ. 2008;42:1593–606.

    Article  CAS  Google Scholar 

  5. Ministério do Meio Ambiente. Poluentes Atomosféricos [internet]. Brasilia: Ministerio do Meio Ambiente. Cited 2016 Aug 19. Available from: http://www.mma.gov.br/cidades-sustentaveis/qualidade-do-ar/poluentes-atmosf%C3%A9ricos.

  6. Mancebo SE, Wang SQ. Recognizing the impact of ambient air pollution on skin health. J Eur Acad Dermatol Venereol. 2015;29(12):2326–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. US Environmental Protection Agency (EPA). Air quality trends [internet]. North Carolina. Updated 2016, Aug. Cited 2016 Aug 09. Available from: https://www.epa.gov/air-trends.

  8. Krutmann J, Liu W, Li L, Pan X, Crawford M, Sore G, Seite S. Pollution and skin: from epidemiological and mechanistic studies to clinical implication. J Dermatol Sci. 2014;76:163–8.

    Article  PubMed  Google Scholar 

  9. Kim EK, Cho D, Park HJ. Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci. 2016;152:126–34.

    Article  CAS  PubMed  Google Scholar 

  10. DetectCarbonMonoxide. CO Knowledge Center [internet]. Cited 2016 Aug 17. Available from: http://www.detectcarbonmonoxide.com/co-health-risks/.

  11. World Health Organization (WHO). Air pollution levels rising in many of the world’s poorest cities [internet]. Geneve: WHO [updated 2016 MAY 12; cited 2016 Aug 10]. Available from: http://www.who.int/mediacentre/news/releases/2016/air-pollution-rising/en/.

  12. US Environmental Protection Agency. Air quality trends [internet]. [Updated 2014 April 21; Cited 2016 Aug 17]. Available from: http://www.epa.gov/airtrends/aqtrends.html#airquality.

  13. Marnitez PJP, Andrade MF, Miranda RM. Traffic-related air quality trends in São Paulo, Brazil. Geophys Res Atmos. 2015;120:6290–304.

    Article  CAS  Google Scholar 

  14. Ministério do Meio Ambiente. Cidades Sustentáveis: Qualidade do Ar [internet]. Brasilia: Ministerio do Meio Ambiente. Cited 2016 Aug 19. Available in: http://www.mma.gov.br/cidades-sustentaveis/qualidade-do-ar.

  15. Copenhagen Consensus Center. Brazil perspectives: air pollution [internet]. Copenhagen. [Cited 2016 Aug 14]. Available from: http://www.copenhagenconsensus.com/publication/brazil-perspectives-air-pollution.

  16. Kumar P, de Fatima MA, Ynoue RY, Fornaro A, de Freitas ED, Martins J, et al. New directions: from biofuels to wood stoves: the modern and ancient air quality challenges in the megacity of Sao Paulo. Atmos Environ. 2016;140:364–9.

    Article  CAS  Google Scholar 

  17. Air Quality Index (AQI). São Paulo air pollution: real-time Air Quality Index (AQI). [Updated 2016 Aug 14. Cited 2016 Aug 14]. Available from http://aqicn.org/city/sao-paulo/.

  18. World Health Organization (WHO). Ambient (outdoor) air quality and health [internet]. Geneve: WHO [updated 2014 Mar; cited 2016 Aug 14]. Available from: http://www.who.int/mediacentre/factsheets/fs313/en/.

  19. Vormittag EM, Rodrigues CG, Miranda MJ, Cavalcanti JA, da Costa RR, Camargo CA, et al. Avaliação do Impacto da Poluição Atmosférica no Estado de São Paulo sob a Visão da Saúde. Instituto Saúde e Sustentabilidade. 2013. Disponivel em: http://www.saudeesustentabilidade.org.br/site/wp-content/uploads/2013/09/Documentofinaldapesquisapadrao_2409-FINAL-sitev1.pdf. Acesso em 19/08/2016.

  20. Lydia Ramsey. About 80% of all cities have worse air quality than what’s considered healthy – here are the 15 with the worst air pollution. Business Insider Inc. [updated 2016 May; Cited 2016 Aug 15]. Available from: http://www.businessinsider.com/the-cities-with-the-worlds-worst-air-pollution-who-2016-5/#1-zabol-iran-217-gm3-of-pm-25-15.

  21. Goldsmith LA. Skin effects of air pollution. Otolaryngol Head Neck Surg. 1996;114(2):217–9.

    Article  CAS  PubMed  Google Scholar 

  22. Suskind RR. Chloracne, “the hallmark of dioxin intoxication”. Scand J Work Environ Health. 1985;11:165–71.

    Article  CAS  PubMed  Google Scholar 

  23. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G. Effects of long term exposure to air pollution on natural cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014.; 1;383(9919):785–95.

    Article  CAS  PubMed  Google Scholar 

  24. Marcilio I, Gouveia N. Quantifying the impact of air pollution on the urban population of Brazil. Cad Saúde Pública. 2007;23(4):S529.

    Article  PubMed  Google Scholar 

  25. Künzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect. 2005;113(2):201–6.

    Google Scholar 

  26. Bauer M, Moebus S, Möhlenkamp S, Dragano N, Nonnemacher M, et al. Urban particulate matter air pollution is associated with subclinical atherosclerosis. results from the HNR (Heinz Nixdorf Recall) study. J Am Coll Cardiol. 2010;56(22):1803–8.

    Google Scholar 

  27. Künzli N, Jerrett M, Garcia-Esteban R, Basagaña X, Beckermann B, et al. Ambient air pollution and the progression of atherosclerosis in adults. PLoS ONE. 2010;5(2):e9096.

    Google Scholar 

  28. Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Lehmann N, et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation. 2007;116(5):489–96.

    Google Scholar 

  29. Kelly FJ, Fussell JC. Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health. 2015;37(4):631–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clark NA, Demers PA, Karr CJ, Koehoorn M, Lencar C, Tamburic L, Brauer M. Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect. 2010;118(2):284–90.

    Article  CAS  PubMed  Google Scholar 

  31. Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, et al. Lung cancer, cardiopulmonary mortality, and longterm exposure to fine particulate air pollution. JAMA. 2002;287(9):1132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heather E, Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry. 2013;70(1):71–7.

    Article  Google Scholar 

  33. Anoop SV, Shah ASV, Lee KK, McAllister DA, Hunter A, Nair H, et al. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ. 2015;350:h1295.

    Google Scholar 

  34. Yaar M, Eller MS, Gilchrest BA. Fifty years of skin aging. J Invest Dermatol. 2003;120:168–9.

    Article  PubMed  Google Scholar 

  35. Vierkotter A, Krutmann J. Environmental influences on skin aging and ethnic- specific manifestations. Dermatoendocrinology. 2012;4:227–31.

    Article  Google Scholar 

  36. Vierkotter A, Schikowski T, Ranft U, Sugiri D, Matsui M, Kramer U, et al. Airborne particle exposure and extrinsic skin aging. J Investig Dermatol. 2010;130:2719–26.

    Article  CAS  PubMed  Google Scholar 

  37. Lee JK, Ko SH, Ye SK, Chung MH. 8-Oxo-2′-deoxyguanosine ameliorates UVB-induced skin damage in hairless mice by scavenging reactive oxygen species and inhibiting MMP expression. J Dermatol Sci. 2013;70:49–57.

    Article  CAS  PubMed  Google Scholar 

  38. Wolf AM, Nishimaki K, Kamimura N, Ohta S. Real-time monitoring of oxidative stress in live mouse skin. J Investig Dermatol. 2014;134:1701–9.

    Article  CAS  PubMed  Google Scholar 

  39. Yun SP, Lee SJ, Oh SY, Jung YH, Ryu JM, Suh HN, et al. Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord-derived mesenchymal stem cells. Br J Pharmacol. 2014;171:3283–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolter S, Price HN. Atopic dermatitis. Pediatr Clin N Am. 2014;61:241–60.

    Article  Google Scholar 

  41. Kim J, Kim EH, Oh I, Jung K, Han Y, Cheong HK, et al. Symptoms of atopic dermatitis are influenced by outdoor air pollution. J Allergy Clin Immunol. 2013;132:495–8. e491

    Article  CAS  PubMed  Google Scholar 

  42. Morgenstern V, Zutavern A, Cyrys J, Brockow I, Koletzko S, Kramer U, et al. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med. 2008;177:1331–7.

    Article  PubMed  Google Scholar 

  43. Song S, Lee K, Lee YM, Lee JH, Lee SI, Yu SD, et al. Acute health effects of urban fine and ultrafine particles on children with atopic dermatitis. Environ Res. 2011;111:394–9.

    Article  CAS  PubMed  Google Scholar 

  44. Eberlein-Konig B, Przybilla B, Kuhnl P, Pechak J, Gebefugi I, Kleinschmidt J, et al. Influence of airborne nitrogen dioxide or formaldehyde on parameters of skin function and cellular activation in patients with atopic eczema and control subjects. J Allergy Clin Immunol. 1998;101:141–3.

    Article  CAS  PubMed  Google Scholar 

  45. Farage M, Maibach HI. Sensitive skin: closing in on a physiological cause. Contact Dermat. 2010;62:137–49.

    Article  Google Scholar 

  46. Kaplan AP. Urticaria and angioedema. In: Adkinson NF, Bochner BS, Busse WW, et al., editors. Middleton’s allergy: principles and practice, vol. 2. 7th ed. St Louis: Mosby; 2009. p. 1063.

    Chapter  Google Scholar 

  47. Kousha T, Valacchi G. The air quality health index and emergency department visits for urticaria in Windsor. Can J Toxicol Environ Health A. 2015;78(8):524–33. doi:https://doi.org/10.1080/15287394.2014.991053.

    Article  PubMed  CAS  Google Scholar 

  48. Xu F, Yan S, Wu M, Li F, Xu X, Song W, et al. Ambient ozone as a risk factor for skin disorders. Br J Dermatol. 2011;165:99–228.

    Article  Google Scholar 

  49. Tsuji G, Takahara M, Uchi H, Takeuchi S, Mitoma C, Moroi Y, et al. An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway. J Dermatol Sci. 2011;62:42–9.

    PubMed  CAS  Google Scholar 

  50. IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Chemical agents and related occupations. Lyon, International Agency for Research on Cancer; 2012.

    Google Scholar 

  51. IARC Monographs on the evaluation of carcinogenic risks to humans, no. 100F. BENZO[a]PYRENE. Available from: http://www.ncbi.nlm.nih.gov/books/NBK304415/.

  52. Ju Q, Zouboulis CC, Xia L. Environmental pollution and acne: chloracne. Dermatoendocrinol. 2009;1(3):125–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Panteleyev AA, Bickers DR. Dioxin-induced chloracne – reconstructing the cellular and molecular mechanisms of a classic environmental disease. Exp Dermatol. 2006;15:705–30.

    Article  CAS  PubMed  Google Scholar 

  54. Geusau A, Tschachler E, Meixner M, et al. Olestra increases faecal excretion of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Lancet. 1999;354:1266–7.

    Article  CAS  PubMed  Google Scholar 

  55. Balkrishnan R, McMichael AJ, Camacho FT, Saltzberg F, Housman TS, Grummer S, Feldman SR, Chren MM. Development and validation of a health-related quality of life instrument for women with melasma. Br J Dermatol. 2003;149(3):572.

    Article  CAS  PubMed  Google Scholar 

  56. Grimes PE. Melasma. Etiologic and therapeutic considerations. Arch Dermatol. 1995;131(12):1453.

    Article  CAS  PubMed  Google Scholar 

  57. Lutfi RJ, Fridmanis M, Misiunas AL, Pafume O, Gonzalez EA, Villemur JA, Mazzini MA, Niepomniszcze H. Association of melasma with thyroid autoimmunity and other thyroidal abnormalities and their relationship to the origin of the melasma. J Clin Endocrinol Metab. 1985;61(1):28.

    Article  CAS  PubMed  Google Scholar 

  58. Passeron T. Melasma pathogenesis and influencing factors – an overview of the latest research. J Eur Acad Dermatol Venereol. 2013;27(Suppl 1):5–6.

    Article  CAS  PubMed  Google Scholar 

  59. Roberts WE. Pollution as a risk factor for the development of melasma and other skin disorders of facial hyperpigmentation – is there a case to be made? J Drugs Dermatol. 2015;14(4):337–41.

    PubMed  CAS  Google Scholar 

  60. Shankar D, Somani VK, Kohli M, Sharad J. A cross-sectional, multicentric clinico-epidemiological study of melasma in India. Dermatol Ther (Heidelb). 2014;4:71–81.

    Article  Google Scholar 

  61. Sivayathorn A. Melasma in orientals clinical drug investigation. Indian J Dermatol. 2012;10(2 Supplement):34–40.

    Google Scholar 

  62. Kang WH, Yoon KH, Lee ES, KIm J, et al. Melasma: histopathological characteristics in 56 Korean patients. Br J Dermatol. 2002;146:228–37.

    Google Scholar 

  63. Noh TK, Choi SJ, Chung BY, Kang JS, et al. Inflammatory features of melasma lesions in Asian skin. J Dermatol. 2014;41(9):788–94.

    Article  CAS  PubMed  Google Scholar 

  64. UV exposure and sun protective practices. Cancer trends progress report – March 2015 Update. National Cancer Institute. http://progressreport.cancer.gov/prevention/sun_protection. Accessed 18 Aug 2016.

  65. Cancer Statistics Review, SEER 1975-2013 (NCI) (2016) http://www.seer.cancer.gov/esr/1975_2013/. Accessed 18 Aug 16.

  66. Eftim SE, Samet JM, Janes H, McDermott A, Dominici F. Fine particulate matter and mortality: a comparison of the six cities and American Cancer Society cohorts with a medicare cohort. Epidemiology. 2008;19:209–16.

    Article  PubMed  Google Scholar 

  67. Puntoni R, Ceppi M, Gennaro V, Ugolini D, Puntoni M, La Manna G, et al. Occupational exposure to carbon black and risk of cancer. Cancer Causes Control. 2004;15:511–6.

    Article  PubMed  Google Scholar 

  68. Boffetta N, Jourenkova P, Gustavsson. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997;8:444–72.

    Article  CAS  PubMed  Google Scholar 

  69. Larsen RK 3rd, Baker JE. Source apportionment of polycyclic aromatic hydrocar- bons in the urban atmosphere: a comparison of three methods. Environ Sci Technol. 2003;37:1873–81.

    Article  CAS  PubMed  Google Scholar 

  70. Matsumoto Y, Ide F, Kishi R, Akutagawa T, Sakai S, Nakamura M, et al. Aryl hydrocarbon receptor plays a significant role in mediating airborne particulate- induced carcinogenesis in mice. Environ Sci Technol. 2007;41:3775–80.

    Article  CAS  PubMed  Google Scholar 

  71. Burke KE, Wei H. Synergistic damage by UVA radiation and pollutants. Toxicol Ind Health. 2009;25:219–24.

    Article  CAS  PubMed  Google Scholar 

  72. Thiele JJ, Traber MG, Polefka TG, Cross CE, Packer L. Ozone-exposure depletes vitamin E and induces lipid peroxidation in murine stratum cor- neum. J Invest Dermatol. 1997;108:753–7.

    Article  CAS  PubMed  Google Scholar 

  73. Weber SU, Thiele JJ, Cross CE, Packer L. Vitamin C, uric acid and glutathione gradients in murine stratum corneum and their susceptability to ozone exposure. J Invest Dermatol. 1999;113:1128–32.

    Article  CAS  PubMed  Google Scholar 

  74. Thiele JJ, Traber MG, Podda M, Tsang K, Cross CE, Packer L. Ozone depletes tocopherols and tocotrienols topically applied to murine skin. FEBS Lett. 1997;401:167–70.

    Article  CAS  PubMed  Google Scholar 

  75. Kim HO, Kim JH, Cho SI, Chung BY, Ahn IS, Lee CH, et al. Improvement of atopic dermatitis severity after reducing indoor air pollutants. Ann Dermatol. 2013;25:292–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tigges J, Haarmann-Stemmann T, Vogel CF, Grindel A, Hübenthal U, Brenden H, et al. The new aryl hydrocarbon receptor antagonist E/Z-2-benzylindene-5, 6-dimethoxy-3,3-dimethylindan-1-one protects against UVB-induced signal transduction. J Invest Dermatol. 2014;134:556–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Heemann Pereira Neto MD, MS .

Editor information

Editors and Affiliations

Glossary

Aging 

Natural process that leads to progressive loss of structure and function of all tissues.

Black carbon 

Environmental pollutant rated ultrafine particulate from diesel exhausts. It is a carcinogen class 1. It is associated with some types of cancer, for example bladder cancer, pleural mesothelioma, and malignant melanoma.

Chloracne 

Acne variant associated with exposure to environmental pollutants that develops after systemic poisoning by halogenated aromatic hydrocarbons. It is characterized by an acneiform eruption consisting of comedones (blackheads and whiteheads), pustules, and cysts.

Extrinsic aging 

Process associated with exposure to free radicals created by numerous environmental factors such as ultraviolet radiation and cigarette smoke. Signs of extrinsic aging are thick wrinkles, irregular pigmentation spots, and elastosis.

Intrinsic aging 

Process related to the accumulation over time of cell damage by reactive oxygen species from the organism itself.

Sensitive skin 

Inflammatory multifactorial syndrome with cutaneous hyperreactivity signals not immune to stimuli generally well tolerated, clinically characterized by subjective complaints of discomfort (burning, itching, xerosis, erythema, papules).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neto, A.H.P., Metzdorf, L., Leite, L.L., Bonamigo, R.R. (2018). Air Pollution and the Skin Health. In: Bonamigo, R., Dornelles, S. (eds) Dermatology in Public Health Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-33919-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33919-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33917-7

  • Online ISBN: 978-3-319-33919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics