Skip to main content

Abstract

Vitiligo is an acquired chronic disease with prevalence of about 1% worldwide. The impact on patients’ self-esteem may range from severe depression to anxiety, which diminish their quality of life. Different hypotheses proposed for vitiligo etiopathogenesis are not necessarily competitive or in disagreement. Vitiligo per se may be in truth a combination of an intricate blend of biological pathways that leads to melanocyte disappearance in lesioned skin. Perhaps the autoimmune phenomenon in vitiligo might be triggered by antigen release caused by oxidative stress or antigen release by detached melanocytes that are presented to the immune system. There is no FDA-approved treatment for this neglected disease. Phototherapy, mainly narrow-band ultraviolet B, is considered the major treatment. Several surgical modalities used for patients with stable disease have delivered good results. The use of topical and systemic glucocorticoids are restricted to those patients with unstable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lu T, Gao T, Wang A, Jin Y, Li Q, Li C. Vitiligo prevalence study in Shaanxi Province. China Int J Dermatol. 2007;46(1):47–51.

    Article  PubMed  Google Scholar 

  2. Das SK, Majumder PP, Chakraborty R, Majumdar TK, Haldar B. Studies on vitiligo. I. Epidemiological profile in Calcutta, India. Genet Epidemiol. 1985;2(1):71–8.

    Google Scholar 

  3. Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003;16(3):208–14.

    Article  PubMed  Google Scholar 

  4. Silva de Castro CC, do Nascimento LM, Olandoski M, Mira MT. A pattern of association between clinical form of vitiligo and disease-related variables in a Brazilian population. J Dermatol Sci. 2012;65(1):63–7.

    Article  PubMed  Google Scholar 

  5. Teulings HE, Overkamp M, Ceylan E, Nieuweboer-Krobotova L, Bos JD, Nijsten T, et al. Decreased risk of melanoma and nonmelanoma skin cancer in patients with vitiligo: a survey among 1307 patients and their partners. Br J Dermatol. 2013;168(1):162–71.

    Article  PubMed  CAS  Google Scholar 

  6. Paradisi A, Tabolli S, Didona B, Sobrino L, Russo N, Abeni D. Markedly reduced incidence of melanoma and nonmelanoma skin cancer in a nonconcurrent cohort of 10,040 patients with vitiligo. J Am Acad Dermatol. 2014;71(6):1110–6.

    Article  PubMed  Google Scholar 

  7. Schallreuter KU, Behrens-Williams S, Khaliq TP, Picksley SM, Peters EM, Marles LK, et al. Increased epidermal functioning wild-type p53 expression in vitiligo. Exp Dermatol. 2003;12(3):268–77.

    Article  PubMed  CAS  Google Scholar 

  8. Bakry OA, Hammam MA, Wahed MM. Immunohistochemical detection of P53 and Mdm2 in vitiligo. Indian Dermatol Online J. 2012;3(3):171–6.

    Google Scholar 

  9. Le Poole IC, Stennett LS, Bonish BK, Dee L, Robinson JK, Hernandez C, et al. Expansion of vitiligo lesions is associated with reduced epidermal CDw60 expression and increased expression of HLA-DR in perilesional skin. Br J Dermatol. 2003;149(4):739–48.

    Article  PubMed  Google Scholar 

  10. Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, et al. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med. 2010;362(18):1686–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bishop DT, Demenais F, Iles MM, Harland M, Taylor JC, Corda E, et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009;41(8):920–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Schallreuter KU, Bahadoran P, Picardo M, Slominski A, Elassiuty YE, Kemp EH, et al. Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else? Exp Dermatol. 2008;17(2):139–40. discussion 41–60

    Article  PubMed  CAS  Google Scholar 

  13. Gauthier Y, Cario Andre M, Taieb A. A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy? Pigment Cell Res. 2003;16(4):322–32.

    Article  PubMed  Google Scholar 

  14. Ezzedine K, Eleftheriadou V, Whitton M, van Geel N. Vitiligo Lancet. 2015;386(9988):74–84.

    Article  PubMed  Google Scholar 

  15. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ, et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol. 2009;129(9):2220–32.

    Article  PubMed  CAS  Google Scholar 

  16. Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol. 2013;25(6):676–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Schallreuter KU, Lemke R, Brandt O, Schwartz R, Westhofen M, Montz R, et al. Vitiligo and other diseases: coexistence or true association? Hamburg study on 321 patients. Dermatology. 1994;188(4):269–75.

    Article  PubMed  CAS  Google Scholar 

  18. British Photodermatology Group guidelines for PUVA. Br J Dermatol. 1994;130(2):246–55.

    Article  Google Scholar 

  19. Radakovic-Fijan S, Furnsinn-Friedl AM, Honigsmann H, Tanew A. Oral dexamethasone pulse treatment for vitiligo. J Am Acad Dermatol. 2001;44(5):814–7.

    Article  PubMed  CAS  Google Scholar 

  20. Clayton R. A double-blind trial of 0–05% clobetasol proprionate in the treatment of vitiligo. Br J Dermatol. 1977;96(1):71–3.

    Article  PubMed  CAS  Google Scholar 

  21. Steitz J, Bruck J, Lenz J, Buchs S, Tuting T. Peripheral CD8+ T cell tolerance against melanocytic self-antigens in the skin is regulated in two steps by CD4+ T cells and local inflammation: implications for the pathophysiology of vitiligo. J Invest Dermatol. 2005;124(1):144–50.

    Article  PubMed  CAS  Google Scholar 

  22. Oyarbide-Valencia K, van den Boorn JG, Denman CJ, Li M, Carlson JM, Hernandez C, et al. Therapeutic implications of autoimmune vitiligo T cells. Autoimmun Rev. 2006;5(7):486–92.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C, Tigges B, Westerhof W, Das P. Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Investig J Tech Methods Pathol. 2000;80(8):1299–309.

    Article  Google Scholar 

  24. Zhang P, Cote AL, de Vries VC, Usherwood EJ, Turk MJ. Induction of postsurgical tumor immunity and T-cell memory by a poorly immunogenic tumor. Cancer Res. 2007;67(13):6468–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. van Geel NA, Mollet IG, De Schepper S, Tjin EP, Vermaelen K, Clark RA, et al. First histopathological and immunophenotypic analysis of early dynamic events in a patient with segmental vitiligo associated with halo nevi. Pigment Cell Melanoma Res. 2010;23(3):375–84.

    Article  PubMed  Google Scholar 

  26. Ricard AS, Pain C, Daubos A, Ezzedine K, Lamrissi-Garcia I, Bibeyran A, et al. Study of CCN3 (NOV) and DDR1 in normal melanocytes and vitiligo skin. Exp Dermatol. 2012;21(6):411–6.

    Google Scholar 

  27. Silva de Castro CC, do Nascimento LM, Walker G, Werneck RI, Nogoceke E, Mira MT. Genetic variants of the DDR1 gene are associated with vitiligo in two independent Brazilian population samples. J Invest Dermatol. 2010;130(7):1813–8.

    Article  PubMed  CAS  Google Scholar 

  28. Fukunaga-Kalabis M, Martinez G, Liu ZJ, Kalabis J, Mrass P, Weninger W, et al. CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1. J Cell Biol. 2006;175(4):563–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Reichert-Faria A, Jung JE, Moreschi Neto V, de Castro CC, Mira MT, Noronha L. Reduced immunohistochemical expression of Discoidin Domain Receptor 1 (DDR1) in vitiligo skin. J Eur Acad Dermatol Venereol. 2013;27(8):1057–9.

    Article  PubMed  CAS  Google Scholar 

  30. Elgarhy LH, Abdullatif A, Abdelazim R, El-Desouky KI. Discoidin domain receptor-1 as a player in impairement of melanocytes adhesion process in vitiligo. G Ital Dermatol Venereol. 2015;151:473.

    PubMed  Google Scholar 

  31. Tarle RG, Silva de Castro CC, do Nascimento LM, Mira MT. Polymorphism of the E-cadherin gene CDH1 is associated with susceptibility to vitiligo. Exp Dermatol. 2015;24(4):300–2.

    Article  PubMed  CAS  Google Scholar 

  32. Wagner RY, Luciani F, Cario-Andre M, Rubod A, Petit V, Benzekri L, et al. Altered E-cadherin levels and distribution in melanocytes precede clinical manifestations of vitiligo. J Invest Dermatol. 2015;135(7):1810–9.

    Article  PubMed  CAS  Google Scholar 

  33. Dell’anna ML, Picardo M. A review and a new hypothesis for non-immunological pathogenetic mechanisms in vitiligo. Pigment Cell Res Sponsored Eur Soc Pigment Cell Res Int Pigment Cell Soc. 2006;19(5):406–11.

    Article  Google Scholar 

  34. Jimbow K, Chen H, Park JS, Thomas PD. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br J Dermatol. 2001;144(1):55–65.

    Article  PubMed  CAS  Google Scholar 

  35. Maresca V, Roccella M, Roccella F, Camera E, Del Porto G, Passi S, et al. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol. 1997;109(3):310–3.

    Article  PubMed  CAS  Google Scholar 

  36. Passi S, Grandinetti M, Maggio F, Stancato A, De Luca C. Epidermal oxidative stress in vitiligo. Pigment Cell Res Sponsored Eur Soc Pigment Cell Res Int Pigment Cell Soc. 1998;11(2):81–5.

    Article  CAS  Google Scholar 

  37. Schallreuter KU, Elwary SM, Gibbons NC, Rokos H, Wood JM. Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun. 2004;315(2):502–8.

    Article  PubMed  CAS  Google Scholar 

  38. Schallreuter KU, Gibbons NC, Zothner C, Elwary SM, Rokos H, Wood JM. Butyrylcholinesterase is present in the human epidermis and is regulated by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun. 2006;349(3):931–8.

    Article  PubMed  CAS  Google Scholar 

  39. Majumder PP, Nordlund JJ, Nath SK. Pattern of familial aggregation of vitiligo. Arch Dermatol. 1993;129(8):994–8.

    Article  PubMed  CAS  Google Scholar 

  40. Nath SK, Majumder PP, Nordlund JJ. Genetic epidemiology of vitiligo: multilocus recessivity cross-validated. Am J Hum Genet. 1994;55(5):981–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Arcos-Burgos M, Parodi E, Salgar M, Bedoya E, Builes J, Jaramillo D, et al. Vitiligo: complex segregation and linkage disequilibrium analyses with respect to microsatellite loci spanning the HLA. Hum Genet. 2002;110(4):334–42.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang XJ, Liu JB, Gui JP, Li M, Xiong QG, Wu HB, et al. Characteristics of genetic epidemiology and genetic models for vitiligo. J Am Acad Dermatol. 2004;51(3):383–90.

    Article  PubMed  Google Scholar 

  43. Nath SK, Kelly JA, Namjou B, Lam T, Bruner GR, Scofield RH, et al. Evidence for a susceptibility gene, SLEV1, on chromosome 17p13 in families with vitiligo-related systemic lupus erythematosus. Am J Hum Genet. 2001;69(6):1401–6.

    Google Scholar 

  44. Spritz RA, Gowan K, Bennett DC, Fain PR. Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am J Hum Genet. 2004;74(1):188–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jin Y, Birlea SA, Fain PR, Spritz RA. Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J Invest Dermatol. 2007;127(11):2558–62.

    Article  PubMed  CAS  Google Scholar 

  46. Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356(12):1216–25.

    Google Scholar 

  47. Levandowski CB, Mailloux CM, Ferrara TM, Gowan K, Ben S, Jin Y, et al. NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1beta processing via the NLRP1 inflammasome. Proc Natl Acad Sci U S A. 2013;110(8):2952–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen JJ, Huang W, Gui JP, Yang S, Zhou FS, Xiong QG, et al. A novel linkage to generalized vitiligo on 4q13-q21 identified in a genomewide linkage analysis of Chinese families. Am J Hum Genet. 2005;76(6):1057–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Liang Y, Yang S, Zhou Y, Gui J, Ren Y, Chen J, et al. Evidence for two susceptibility loci on chromosomes 22q12 and 6p21-p22 in Chinese generalized vitiligo families. J Invest Dermatol. 2007;127(11):2552–7.

    Google Scholar 

  50. Birlea SA, Jin Y, Bennett DC, Herbstman DM, Wallace MR, McCormack WT, et al. Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J Invest Dermatol. 2011;131(2):371–81.

    Article  PubMed  CAS  Google Scholar 

  51. Ren Y, Yang S, Xu S, Gao M, Huang W, Gao T, et al. Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo. PLoS Genet. 2009;5(6):e1000523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Liou HC, Boothby MR, Finn PW, Davidon R, Nabavi N, Zeleznik-Le NJ, et al. A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science. 1990;247(4950):1581–4.

    Article  PubMed  CAS  Google Scholar 

  53. Tarle RG, Nascimento LM, Mira MT, Castro CC. Vitiligo – part 1. An Bras Dermatol. 2014;89(3):461–70.

    Google Scholar 

  54. Tastan HB, Akar A, Orkunoglu FE, Arca E, Inal A. Association of HLA class I antigens and HLA class II alleles with vitiligo in a Turkish population. Pigment Cell Res. 2004;17(2):181–4.

    Article  PubMed  CAS  Google Scholar 

  55. Hu DY, Ren YQ, Zhu KJ, Lv YM, Cheng H, Zhang Z, et al. Comparisons of clinical features of HLA-DRB1*07 positive and negative vitiligo patients in Chinese Han population. J Eur Acad Dermatol Venereol. 2011;25(11):1299–303.

    Article  PubMed  Google Scholar 

  56. Cavalli G, Hayashi M, Jin Y, Yorgov D, Santorico SA, Holcomb C, et al. MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo. Proc Natl Acad Sci U S A. 2016;113(5):1363–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hayashi M, Jin Y, Yorgov D, Santorico SA, Hagman J, Ferrara TM, et al. Autoimmune vitiligo is associated with gain-of-function by a transcriptional regulator that elevates expression of HLA-A*02:01 in vivo. Proc Natl Acad Sci U S A. 2016;113(5):1357–62.

    Google Scholar 

  58. Alkhateeb A, Stetler GL, Old W, Talbert J, Uhlhorn C, Taylor M, et al. Mapping of an autoimmunity susceptibility locus (AIS1) to chromosome 1p31.3-p32.2. Hum Mol Genet. 2002;11(6):661–7.

    Article  PubMed  CAS  Google Scholar 

  59. Fain PR, Gowan K, LaBerge GS, Alkhateeb A, Stetler GL, Talbert J, et al. A genomewide screen for generalized vitiligo: confirmation of AIS1 on chromosome 1p31 and evidence for additional susceptibility loci. Am J Hum Genet. 2003;72(6):1560–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9(5):356–69.

    Article  PubMed  CAS  Google Scholar 

  61. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet. 2004;75(2):330–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chung SA, Criswell LA. PTPN22: its role in SLE and autoimmunity. Autoimmunity. 2007;40(8):582–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Oetting WS. The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): a model for understanding the molecular biology of melanin formation. Pigment Cell Res. 2000;13(5):320–5.

    Article  PubMed  CAS  Google Scholar 

  64. Oetting WS, King RA. Molecular basis of albinism: mutations and polymorphisms of pigmentation genes associated with albinism. Hum Mutat. 1999;13(2):99–115.

    Article  PubMed  CAS  Google Scholar 

  65. Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44(6):676–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, et al. Genome-wide analysis identifies a quantitative trait locus in the MHC class II region associated with generalized vitiligo age of onset. J Invest Dermatol. 2011;131(6):1308–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Quan C, Ren YQ, Xiang LH, Sun LD, Xu AE, Gao XH, et al. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet. 2010;42(7):614–8.

    Article  PubMed  CAS  Google Scholar 

  68. Tang XF, Zhang Z, Hu DY, Xu AE, Zhou HS, Sun LD, et al. Association analyses identify three susceptibility Loci for vitiligo in the Chinese Han population. J Invest Dermatol. 2013;133(2):403–10.

    Article  PubMed  CAS  Google Scholar 

  69. Njoo MD, Das PK, Bos JD, Westerhof W. Association of the Kobner phenomenon with disease activity and therapeutic responsiveness in vitiligo vulgaris. Arch Dermatol. 1999;135(4):407–13.

    Article  PubMed  CAS  Google Scholar 

  70. Gauthier Y, Cario-Andre M, Lepreux S, Pain C, Taieb A. Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo. Br J Dermatol. 2003;148(1):95–101.

    Article  PubMed  CAS  Google Scholar 

  71. Kim HJ, Uhm YK, Yun JY, Im SH, Yim SV, Chung JH, et al. Association between polymorphisms of discoidin domain receptor tyrosine kinase 1 (DDR1) and non-segmental vitiligo in the Korean population. Eur J Dermatol. 2010;20(2):231–2.

    PubMed  Google Scholar 

  72. Eswaramoorthy R, Wang CK, Chen WC, Tang MJ, Ho ML, Hwang CC, et al. DDR1 regulates the stabilization of cell surface E-cadherin and E-cadherin-mediated cell aggregation. J Cell Physiol. 2010;224(2):387–97.

    Article  PubMed  CAS  Google Scholar 

  73. Schallreuter KU, Moore J, Wood JM, Beazley WD, Gaze DC, Tobin DJ, et al. In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Investig Dermatol Symp Proc. 1999;4(1):91–6.

    Google Scholar 

  74. Nascimento LM, Silva de Castro CC, Fava VM, Iani Werneck R, Mira MT. Genetic and biochemical evidence implicates the butyrylcholinesterase gene BCHE in vitiligo pathogenesis. Exp Dermatol. 2015;24:976.

    Article  Google Scholar 

  75. Linthorst Homan MW, Spuls PI, de Korte J, Bos JD, Sprangers MA, van der Veen JP. The burden of vitiligo: patient characteristics associated with quality of life. J Am Acad Dermatol. 2009;61(3):411–20.

    Article  PubMed  Google Scholar 

  76. Orecchia G, Marelli MA, Fresa D, Robiolio L. Audiologic disturbances in vitiligo. J Am Acad Dermatol. 1989;21(6):1317–8.

    Article  PubMed  CAS  Google Scholar 

  77. Nordlund JJ, Taylor NT, Albert DM, Wagoner MD, Lerner AB. The prevalence of vitiligo and poliosis in patients with uveitis. J Am Acad Dermatol. 1981;4(5):528–36.

    Article  PubMed  CAS  Google Scholar 

  78. Biswas G, Barbhuiya JN, Biswas MC, Islam MN, Dutta S. Clinical pattern of ocular manifestations in vitiligo. J Indian Med Assoc. 2003;101(8):478–80.

    PubMed  Google Scholar 

  79. Bilgic O, Bilgic A, Akis HK, Eskioglu F, Kilic EZ. Depression, anxiety and health-related quality of life in children and adolescents with vitiligo. Clin Exp Dermatol. 2011;36(4):360–5.

    Article  PubMed  CAS  Google Scholar 

  80. Radtke MA, Schafer I, Gajur A, Langenbruch A, Augustin M. Willingness-to-pay and quality of life in patients with vitiligo. Br J Dermatol. 2009;161(1):134–9.

    Article  PubMed  CAS  Google Scholar 

  81. Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CC, et al. Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012;25(3):E1–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Zhang Z, Xu SX, Zhang FY, Yin XY, Yang S, Xiao FL, et al. The analysis of genetics and associated autoimmune diseases in Chinese vitiligo patients. Arch Dermatol Res. 2009;301(2):167–73.

    Article  PubMed  CAS  Google Scholar 

  83. Mazereeuw-Hautier J, Bezio S, Mahe E, Bodemer C, Eschard C, Viseux V, et al. Segmental and nonsegmental childhood vitiligo has distinct clinical characteristics: a prospective observational study. J Am Acad Dermatol. 2010;62(6):945–9.

    Article  PubMed  Google Scholar 

  84. Laberge G, Mailloux CM, Gowan K, Holland P, Bennett DC, Fain PR, et al. Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo. Pigment Cell Res. 2005;18(4):300–5.

    Article  PubMed  Google Scholar 

  85. Iacovelli P, Sinagra JL, Vidolin AP, Marenda S, Capitanio B, Leone G, et al. Relevance of thyroiditis and of other autoimmune diseases in children with vitiligo. Dermatology. 2005;210(1):26–30.

    Article  PubMed  Google Scholar 

  86. Kakourou T, Kanaka-Gantenbein C, Papadopoulou A, Kaloumenou E, Chrousos GP. Increased prevalence of chronic autoimmune (Hashimoto’s) thyroiditis in children and adolescents with vitiligo. J Am Acad Dermatol. 2005;53(2):220–3.

    Article  PubMed  Google Scholar 

  87. Vrijman C, Kroon MW, Limpens J, Leeflang MM, Luiten RM, van der Veen JP, et al. The prevalence of thyroid disease in patients with vitiligo: a systematic review. Br J Dermatol. 2012;167(6):1224–35.

    Article  PubMed  CAS  Google Scholar 

  88. Taieb A, Alomar A, Bohm M, Dell’anna ML, De Pase A, Eleftheriadou V, et al. Guidelines for the management of vitiligo: the European Dermatology Forum consensus. Br J Dermatol. 2013;168(1):5–19.

    Article  PubMed  CAS  Google Scholar 

  89. Alikhan A, Felsten LM, Daly M, Petronic-Rosic V. Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol. 2011;65(3):473–91.

    Google Scholar 

  90. Montes LF, Abulafia J, Wilborn WH, Hyde BM, Montes CM. Value of histopathology in vitiligo. Int J Dermatol. 2003;42(1):57–61.

    Article  PubMed  Google Scholar 

  91. Kim YC, Kim YJ, Kang HY, Sohn S, Lee ES. Histopathologic features in vitiligo. Am J Dermatopathol. 2008;30(2):112–6.

    Article  PubMed  Google Scholar 

  92. Redondo P, Del Olmo J. Images in clinical medicine. Vitiligo and cutaneous melanoma. N Engl J Med. 2008;(3):359, e3.

    Google Scholar 

  93. Quaglino P, Marenco F, Osella-Abate S, Cappello N, Ortoncelli M, Salomone B, et al. Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: results from a single-institution hospital-based observational cohort study. Ann Oncol. 2010;21(2):409–14.

    Article  PubMed  CAS  Google Scholar 

  94. Kwinter J, Pelletier J, Khambalia A, Pope E. High-potency steroid use in children with vitiligo: a retrospective study. J Am Acad Dermatol. 2007;56(2):236–41.

    Article  PubMed  Google Scholar 

  95. Lotti T, Berti S, Moretti S. Vitiligo therapy. Expert Opin Pharmacother. 2009;10(17):2779–85.

    Article  PubMed  CAS  Google Scholar 

  96. Njoo MD, Spuls PI, Bos JD, Westerhof W, Bossuyt PM. Nonsurgical repigmentation therapies in vitiligo. Meta-analysis of the literature. Arch Dermatol. 1998;134(12):1532–40.

    PubMed  CAS  Google Scholar 

  97. Gawkrodger DJ, Ormerod AD, Shaw L, Mauri-Sole I, Whitton ME, Watts MJ, et al. Guideline for the diagnosis and management of vitiligo. Br J Dermatol. 2008;159(5):1051–76.

    Article  PubMed  CAS  Google Scholar 

  98. Falabella R, Barona MI. Update on skin repigmentation therapies in vitiligo. Pigment Cell Melanoma Res. 2009;22(1):42–65.

    Article  PubMed  CAS  Google Scholar 

  99. Lepe V, Moncada B, Castanedo-Cazares JP, Torres-Alvarez MB, Ortiz CA, Torres-Rubalcava AB. A double-blind randomized trial of 0.1% tacrolimus vs 0.05% clobetasol for the treatment of childhood vitiligo. Arch Dermatol. 2003;139(5):581–5.

    Article  PubMed  CAS  Google Scholar 

  100. Kumari J. Vitiligo treated with topical clobetasol propionate. Arch Dermatol. 1984;120(5):631–5.

    Article  PubMed  CAS  Google Scholar 

  101. Felsten LM, Alikhan A, Petronic-Rosic V. Vitiligo: a comprehensive overview Part II: treatment options and approach to treatment. J Am Acad Dermatol. 2011;65(3):493–514.

    Article  PubMed  Google Scholar 

  102. Lan CC, Chen GS, Chiou MH, Wu CS, Chang CH, Yu HS. FK506 promotes melanocyte and melanoblast growth and creates a favourable milieu for cell migration via keratinocytes: possible mechanisms of how tacrolimus ointment induces repigmentation in patients with vitiligo. Br J Dermatol. 2005;153(3):498–505.

    Article  PubMed  CAS  Google Scholar 

  103. Grimes PE, Morris R, Avaniss-Aghajani E, Soriano T, Meraz M, Metzger A. Topical tacrolimus therapy for vitiligo: therapeutic responses and skin messenger RNA expression of proinflammatory cytokines. J Am Acad Dermatol. 2004;51(1):52–61.

    Article  PubMed  Google Scholar 

  104. Grimes PE, Soriano T, Dytoc MT. Topical tacrolimus for repigmentation of vitiligo. J Am Acad Dermatol. 2002;47(5):789–91.

    Article  PubMed  Google Scholar 

  105. Silverberg NB, Lin P, Travis L, Farley-Li J, Mancini AJ, Wagner AM, et al. Tacrolimus ointment promotes repigmentation of vitiligo in children: a review of 57 cases. J Am Acad Dermatol. 2004;51(5):760–6.

    Article  PubMed  Google Scholar 

  106. Xu AE, Zhang DM, Wei XD, Huang B, Lu LJ. Efficacy and safety of tarcrolimus cream 0.1% in the treatment of vitiligo. Int J Dermatol. 2009;48(1):86–90.

    Article  PubMed  Google Scholar 

  107. Hartmann A, Brocker EB, Hamm H. Occlusive treatment enhances efficacy of tacrolimus 0.1% ointment in adult patients with vitiligo: results of a placebo-controlled 12-month prospective study. Acta Derm Venereol. 2008;88(5):474–9.

    Article  PubMed  CAS  Google Scholar 

  108. Tanghetti EA. Tacrolimus ointment 0.1% produces repigmentation in patients with vitiligo: results of a prospective patient series. Cutis. 2003;71(2):158–62.

    PubMed  Google Scholar 

  109. Mayoral FA, Vega JM, Stavisky H, McCormick CL, Parneix-Spake A. Retrospective analysis of pimecrolimus cream 1% for treatment of facial vitiligo. J Drugs Dermatol. 2007;6(5):517–21.

    PubMed  Google Scholar 

  110. Seirafi H, Farnaghi F, Firooz A, Vasheghani-Farahani A, Alirezaie NS, Dowlati Y. Pimecrolimus cream in repigmentation of vitiligo. Dermatology. 2007;214(3):253–9.

    Article  PubMed  Google Scholar 

  111. Hartmann A, Brocker EB, Hamm H. Repigmentation of pretibial vitiligo with calcineurin inhibitors under occlusion. J Dtsch Dermatol Ges. 2008;6(5):383–5.

    Article  PubMed  Google Scholar 

  112. Choi CW, Chang SE, Bak H, Choi JH, Park HS, Huh CH, et al. Topical immunomodulators are effective for treatment of vitiligo. J Dermatol. 2008;35(8):503–7.

    Article  PubMed  Google Scholar 

  113. Coskun B, Saral Y, Turgut D. Topical 0.05% clobetasol propionate versus 1% pimecrolimus ointment in vitiligo. Eur J Dermatol. 2005;15(2):88–91.

    PubMed  Google Scholar 

  114. Passeron T, Ostovari N, Zakaria W, Fontas E, Larrouy JC, Lacour JP, et al. Topical tacrolimus and the 308-nm excimer laser: a synergistic combination for the treatment of vitiligo. Arch Dermatol. 2004;140(9):1065–9.

    Article  PubMed  CAS  Google Scholar 

  115. Kawalek AZ, Spencer JM, Phelps RG. Combined excimer laser and topical tacrolimus for the treatment of vitiligo: a pilot study. Dermatol Surg. 2004;30(2 Pt 1):130–5.

    PubMed  Google Scholar 

  116. www.fda.gov/bbs/topics/news/2006/NEW01299.html [Cited 2016 February 10].

    Google Scholar 

  117. McCollum AD, Paik A, Eichenfield LF. The safety and efficacy of tacrolimus ointment in pediatric patients with atopic dermatitis. Pediatr Dermatol. 2010;27(5):425–36.

    Article  PubMed  Google Scholar 

  118. Kumaran MS, Kaur I, Kumar B. Effect of topical calcipotriol, betamethasone dipropionate and their combination in the treatment of localized vitiligo. J Eur Acad Dermatol Venereol. 2006;20(3):269–73.

    Article  PubMed  CAS  Google Scholar 

  119. Travis LB, Silverberg NB. Calcipotriene and corticosteroid combination therapy for vitiligo. Pediatr Dermatol. 2004;21(4):495–8.

    Article  PubMed  Google Scholar 

  120. Hartmann A, Lurz C, Hamm H, Brocker EB, Hofmann UB. Narrow-band UVB311 nm vs. broad-band UVB therapy in combination with topical calcipotriol vs. placebo in vitiligo. Int J Dermatol. 2005;44(9):736–42.

    Google Scholar 

  121. Arca E, Tastan HB, Erbil AH, Sezer E, Koc E, Kurumlu Z. Narrow-band ultraviolet B as monotherapy and in combination with topical calcipotriol in the treatment of vitiligo. J Dermatol. 2006;33(5):338–43.

    Article  PubMed  CAS  Google Scholar 

  122. Ada S, Sahin S, Boztepe G, Karaduman A, Kolemen F. No additional effect of topical calcipotriol on narrow-band UVB phototherapy in patients with generalized vitiligo. Photodermatol Photoimmunol Photomed. 2005;21(2):79–83.

    Article  PubMed  CAS  Google Scholar 

  123. Goktas EO, Aydin F, Senturk N, Canturk MT, Turanli AY. Combination of narrow band UVB and topical calcipotriol for the treatment of vitiligo. J Eur Acad Dermatol Venereol. 2006;20(5):553–7.

    Article  PubMed  CAS  Google Scholar 

  124. Ermis O, Alpsoy E, Cetin L, Yilmaz E. Is the efficacy of psoralen plus ultraviolet A therapy for vitiligo enhanced by concurrent topical calcipotriol? A placebo-controlled double-blind study. Br J Dermatol. 2001;145(3):472–5.

    Article  PubMed  CAS  Google Scholar 

  125. Radmanesh M, Saedi K. The efficacy of combined PUVA and low-dose azathioprine for early and enhanced repigmentation in vitiligo patients. J Dermatolog Treat. 2006;17(3):151–3.

    Article  PubMed  CAS  Google Scholar 

  126. Singh H, Kumaran MS, Bains A, Parsad D. A randomized comparative study of oral corticosteroid minipulse and low-dose oral methotrexate in the treatment of unstable vitiligo. Dermatology. 2015;231(3):286–90.

    Article  PubMed  CAS  Google Scholar 

  127. Hexsel CL, Eide MJ, Johnson CC, Krajenta R, Jacobsen G, Hamzavi I, et al. Incidence of nonmelanoma skin cancer in a cohort of patients with vitiligo. J Am Acad Dermatol. 2009;60(6):929–33.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Alghamdi K, Khurrum H. Methotrexate for the treatment of generalized vitiligo. Saudi Pharm J. 2013;21(4):423–4.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pacifico A, Leone G. Photo(chemo)therapy for vitiligo. Photodermatol Photoimmunol Photomed. 2011;27(5):261–77.

    Article  PubMed  CAS  Google Scholar 

  130. Ortonne J-P, Passeron T. Vitiligo and other disorders of hypopigmentation. In: Bolognia JL, Jorizzo JL, Schaffer JV, editors. Dermatology. 1. 3 ed. Philadelphia: Elsevier; 2012.

    Google Scholar 

  131. Anbar TS, Westerhof W, Abdel-Rahman AT, El-Khayyat MA. Evaluation of the effects of NB-UVB in both segmental and non-segmental vitiligo affecting different body sites. Photodermatol Photoimmunol Photomed. 2006;22(3):157–63.

    Article  PubMed  CAS  Google Scholar 

  132. Park JH, Park SW, Lee DY, Lee JH, Yang JM. The effectiveness of early treatment in segmental vitiligo: retrospective study according to disease duration. Photodermatol Photoimmunol Photomed. 2013;29(2):103–5.

    Article  PubMed  CAS  Google Scholar 

  133. Sapam R, Agrawal S, Dhali TK. Systemic PUVA vs. narrowband UVB in the treatment of vitiligo: a randomized controlled study. Int J Dermatol. 2012;51(9):1107–15.

    Article  PubMed  Google Scholar 

  134. Yones SS, Palmer RA, Garibaldinos TM, Hawk JL. Randomized double-blind trial of treatment of vitiligo: efficacy of psoralen-UV-A therapy vs Narrowband-UV-B therapy. Arch Dermatol. 2007;143(5):578–84.

    Article  PubMed  CAS  Google Scholar 

  135. Hearn RM, Kerr AC, Rahim KF, Ferguson J, Dawe RS. Incidence of skin cancers in 3867 patients treated with narrow-band ultraviolet B phototherapy. Br J Dermatol. 2008;159(4):931–5.

    Article  PubMed  CAS  Google Scholar 

  136. Man I, Crombie IK, Dawe RS, Ibbotson SH, Ferguson J. The photocarcinogenic risk of narrowband UVB (TL-01) phototherapy: early follow-up data. Br J Dermatol. 2005;152(4):755–7.

    Article  PubMed  CAS  Google Scholar 

  137. Cho S, Zheng Z, Park YK, Roh MR. The 308-nm excimer laser: a promising device for the treatment of childhood vitiligo. Photodermatol Photoimmunol Photomed. 2011;27(1):24–9.

    Article  PubMed  Google Scholar 

  138. Do JE, Shin JY, Kim DY, Hann SK, Oh SH. The effect of 308 nm excimer laser on segmental vitiligo: a retrospective study of 80 patients with segmental vitiligo. Photodermatol Photoimmunol Photomed. 2011;27(3):147–51.

    Google Scholar 

  139. Mouzakis JA, Liu S, Cohen G. Rapid response of facial vitiligo to 308 nm excimer laser and topical calcipotriene. J Clin Aesthet Dermatol. 2011;4(6):41–4.

    Google Scholar 

  140. Oh SH, Kim T, Jee H, Do JE, Lee JH. Combination treatment of non-segmental vitiligo with a 308-nm xenon chloride excimer laser and topical high-concentration tacalcitol: a prospective, single-blinded, paired, comparative study. J Am Acad Dermatol. 2011;65(2):428–30.

    Article  PubMed  CAS  Google Scholar 

  141. Le Duff F, Fontas E, Giacchero D, Sillard L, Lacour JP, Ortonne JP, et al. 308-nm excimer lamp vs. 308-nm excimer laser for treating vitiligo: a randomized study. Br J Dermatol. 2010;163(1):188–92.

    PubMed  Google Scholar 

  142. Zhang XY, He YL, Dong J, Xu JZ, Wang J. Clinical efficacy of a 308 nm excimer laser in the treatment of vitiligo. Photodermatol Photoimmunol Photomed. 2010;26(3):138–42.

    Google Scholar 

  143. Hong SB, Park HH, Lee MH. Short-term effects of 308-nm xenon-chloride excimer laser and narrow-band ultraviolet B in the treatment of vitiligo: a comparative study. J Korean Med Sci. 2005;20(2):273–8.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Bae JM, Yoo HJ, Kim H, Lee JH, Kim GM. Combination therapy with 308-nm excimer laser, topical tacrolimus, and short-term systemic corticosteroids for segmental vitiligo: a retrospective study of 159 patients. J Am Acad Dermatol. 2015;73(1):76–82.

    Article  PubMed  CAS  Google Scholar 

  145. Saraceno R, Nistico SP, Capriotti E, Chimenti S. Monochromatic excimer light 308 nm in monotherapy and combined with topical khellin 4% in the treatment of vitiligo: a controlled study. Dermatol Ther. 2009;22(4):391–4.

    Google Scholar 

  146. Xiang L. Once-weekly treatment of vitiligo with monochromatic excimer light 308 nm in Chinese patients. J Eur Acad Dermatol Venereol: JEADV. 2008;22(7):899–900.

    Google Scholar 

  147. Casacci M, Thomas P, Pacifico A, Bonnevalle A, Paro Vidolin A, Leone G. Comparison between 308-nm monochromatic excimer light and narrowband UVB phototherapy (311–313 nm) in the treatment of vitiligo – a multicentre controlled study. J Eur Acad Dermatol Venereol: JEADV. 2007;21(7):956–63.

    Google Scholar 

  148. Lu-yan T, Wen-wen F, Lei-hong X, Yi J, Zhi-zhong Z. Topical tacalcitol and 308-nm monochromatic excimer light: a synergistic combination for the treatment of vitiligo. Photodermatol Photoimmunol Photomed. 2006;22(6):310–4.

    Article  PubMed  Google Scholar 

  149. Bianchi B, Campolmi P, Mavilia L, Danesi A, Rossi R, Cappugi P. Monochromatic excimer light (308 nm): an immunohistochemical study of cutaneous T cells and apoptosis-related molecules in psoriasis. J Eur Acad Dermatol Venereol: JEADV. 2003;17(4):408–13.

    Article  PubMed  CAS  Google Scholar 

  150. Singh S, Khandpur S, Sharma VK, Ramam M. Comparison of efficacy and side-effect profile of oral PUVA vs. oral PUVA sol in the treatment of vitiligo: a 36-week prospective study. J Eur Acad Dermatol Venereol: JEADV. 2013;27(11):1344–51.

    Article  PubMed  CAS  Google Scholar 

  151. Gupta S, Olsson MJ, Kanwar AJ, Ortonne J-P. Surgical management of vitiligo. Oxford: Blackwell Publishing; 2007.

    Google Scholar 

  152. Mulekar SV, Al Issa A, Al EA. Treatment of vitiligo on difficult-to-treat sites using autologous noncultured cellular grafting. Dermatol Surg: Off Publ Am Soc Dermatol Surg [et al.]. 2009;35(1):66–71.

    CAS  Google Scholar 

  153. Falabella R. The minigrafting test for vitiligo: validation of a predicting tool. J Am Acad Dermatol. 2004;51(4):672–3.

    Article  PubMed  Google Scholar 

  154. Sahni K, Parsad D. Stability in vitiligo: is there a perfect way to predict it? J Cutan Aesth Surg. 2013;6(2):75–82.

    Article  Google Scholar 

  155. Parsad D, Gupta S, Force IDT. Standard guidelines of care for vitiligo surgery. Indian J Dermatol Venereol Leprol. 2008;74(Suppl):S37–45.

    PubMed  Google Scholar 

  156. Falabella R, Arrunategui A, Barona MI, Alzate A. The minigrafting test for vitiligo: detection of stable lesions for melanocyte transplantation. J Am Acad Dermatol. 1995;32(2 Pt 1):228–32.

    Article  PubMed  CAS  Google Scholar 

  157. Zhang DM, Hong WS, Fu LF, Wei XD, Xu AE. A randomized controlled study of the effects of different modalities of narrow-band ultraviolet B therapy on the outcome of cultured autologous melanocytes transplantation in treating vitiligo. Dermatol Surg: Off Publ Am Soc Dermatol Surg [et al.]. 2014;40(4):420–6.

    Article  CAS  Google Scholar 

  158. Malakar S, Dhar S. Treatment of stable and recalcitrant vitiligo by autologous miniature punch grafting: a prospective study of 1,000 patients. Dermatology. 1999;198(2):133–9.

    Article  PubMed  CAS  Google Scholar 

  159. Saldanha KD, Machado Filho CD, Paschoal FM. Action of topical mometasone on the pigmented halos of micrografting in patients with vitiligo. An Bras Dermatol. 2012;87(5):685–90.

    Article  PubMed  Google Scholar 

  160. Falabella R. Surgical treatment of vitiligo: why, when and how. J Eur Acad Dermatol Venereol: JEADV. 2003;17(5):518–20.

    Article  PubMed  CAS  Google Scholar 

  161. Chandrashekar B, Madura C, Varsha D. Autologous mini punch grafting: an experience of using motorized power punch in 10 patients. J Cutan Aesthet Surg. 2014;7(1):42–5.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ashique KT, Kaliyadan F. Long-term follow-up and donor site changes evaluation in suction blister epidermal grafting done for stable vitiligo: a retrospective study. Indian J Dermatol. 2015;60(4):369–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Gou D, Currimbhoy S, Pandya AG. Suction blister grafting for vitiligo: efficacy and clinical predictive factors. Dermatol Surg: Off Publ Am Soc Dermatol Surg [et al.]. 2015;41(5):633–9.

    Article  CAS  Google Scholar 

  164. Agrawal K, Agrawal A. Vitiligo: repigmentation with dermabrasion and thin split-thickness skin graft. Dermatol Surg: Off Publ Am Soc Dermatol Surg. 1995;21(4):295–300.

    Article  CAS  Google Scholar 

  165. Budania A, Parsad D, Kanwar AJ, Dogra S. Comparison between autologous noncultured epidermal cell suspension and suction blister epidermal grafting in stable vitiligo: a randomized study. Br J Dermatol. 2012;167(6):1295–301.

    Article  PubMed  CAS  Google Scholar 

  166. Kumar A, Mohanty S, Sahni K, Kumar R, Gupta S. Extracted hair follicle outer root sheath cell suspension for pigment cell restoration in vitiligo. J Cutan Aesthet Surg. 2013;6(2):121–5.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Vinay K, Dogra S, Parsad D, Kanwar AJ, Kumar R, Minz RW, et al. Clinical and treatment characteristics determining therapeutic outcome in patients undergoing autologous non-cultured outer root sheath hair follicle cell suspension for treatment of stable vitiligo. J Eur Acad Dermatol Venereol: JEADV. 2015;29(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  168. Singh C, Parsad D, Kanwar AJ, Dogra S, Kumar R. Comparison between autologous noncultured extracted hair follicle outer root sheath cell suspension and autologous noncultured epidermal cell suspension in the treatment of stable vitiligo: a randomized study. Br J Dermatol. 2013;169(2):287–93.

    Article  PubMed  CAS  Google Scholar 

  169. Chen YF, Yang PY, Hu DN, Kuo FS, Hung CS, Hung CM. Treatment of vitiligo by transplantation of cultured pure melanocyte suspension: analysis of 120 cases. J Am Acad Dermatol. 2004;51(1):68–74.

    Article  PubMed  Google Scholar 

  170. Verma G, Varkhande SR, Kar HK, Rani R. Evaluation of repigmentation with cultured melanocyte transplantation (CMT) compared with non-cultured epidermal cell transplantation in vitiligo at 12th week reveals better repigmentation with CMT. J Invest Dermatol. 2015;135(10):2533–5.

    Article  PubMed  CAS  Google Scholar 

Suggested Literature

  • Nordlund JJ. The pigmentary system : physiology and pathophysiology. 2nd ed. Malden: Blackwell Pub.; 2006.

    Book  Google Scholar 

  • Picardo M, Taieb A. Vitiligo. 1st ed. Berlin: Springer; 2010.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio Cesar Silva de Castro MD, PhD .

Editor information

Editors and Affiliations

Glossary

Glossary

  1. 1.

    Single nucleotide polymorphism (SNP): A variation in a single nucleotide at defined positions within genomes and are responsible for individual phenotypic characteristics, including a person’s propensity toward complex disorders. Each variation is present to some appreciable degree within a population.

  2. 2.

    Regulatory T Cells (TREGs): A subpopulation of T cells that modulate the immune system and are defined based on expression of CD4, CD25, and the transcription factor FoxP3. TREGs are crucial mediators of self-tolerance in the periphery, preventing autoimmune diseases and limiting chronic inflammatory diseases.

  3. 3.

    Koebner phenomenon: or isomorphic response; refers to the appearance of lesions along a site of injury.

  4. 4.

    Mosaicism: A condition whereby cells within the same person have a different genetic makeup, i.e., different cells in the same individual have different numbers or arrangements of chromosomes. It is called “mosaicism” because, in a way, the cells of the body are similar to the tiles of a mosaic. This condition can affect any type of cell, including: blood cells, sperm cells, and skin cells.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dellatorre, G., Cerci, F.B., Fava, V.M., Silva de Castro, C.C. (2018). Vitiligo. In: Bonamigo, R., Dornelles, S. (eds) Dermatology in Public Health Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-33919-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33919-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33917-7

  • Online ISBN: 978-3-319-33919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics