Skip to main content

Anodization: A Promising Nano Modification Technique of Titanium-Based Implants for Orthopedic Applications

  • Chapter
  • First Online:
Surgical Tools and Medical Devices

Abstract

Titanium is protected by a thin titanium oxide layer, which spontaneously forms on its surface when exposed to air or other oxygen-containing environments. This oxide passive layer is typically 2–5 nm thick and is responsible for the well-documented corrosion resistance property of titanium and its alloys. Because of this and their excellent mechanical properties, titanium and its alloys are widely used in orthopedic and dental applications. However, the native TiO2 layer is not bioactive enough to form a direct bonding with bone, which means the lack of osseointegration to juxtaposed bone might lead to long-term failure after implantation. Specifically, the 10- to 15-year lifetime of current titanium-based orthopedic implants is not as long as expected by many patients. This chapter reviews many of the current research that is being carried out to extend the life of implants by nano modification techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Brunette, D. M, Tengvall, P., Textor, M., & Thomsen, P. (2001). Titanium in medicine (p. 171). Berlin: Springer.

    Book  Google Scholar 

  2. Shackelford, J. F. (1999). Bioceramics (vol. 1, p. 17). Netherlands: Gordon and Breach Science Publishers.

    Google Scholar 

  3. Moran, C. G., & Horton, T. C. (2000). BMJ, 320, 820.

    Article  Google Scholar 

  4. Brunette, D. M., Tengvall, P., Textor, M., & Thomsen, P. (2001). Titanium in medicine (p. 232). Berlin: Springer.

    Book  Google Scholar 

  5. Larsson, C., Thomsen, P., Aronsson, B. O., Rodahl, M., Lausmaa, J., Kasemo, B., & Ericson, L. E. (1996). Biomaterials, 17, 605.

    Article  Google Scholar 

  6. Kim, H. M., Miyaji, F., Kokubo, T., & Nakamura, T. (1997). Journal of Materials Science: Materials in Medicine, 8, 341.

    Article  Google Scholar 

  7. Kokubo, T., Kim, H. M., Kawashita, M., & Nakamura, T. (2004). Journal of Materials Science: Materials in Medicine, 15, 899.

    Google Scholar 

  8. Sittig, C., Textor, M., Spencer, N. D., Wieland, M., & Vallotton, P. H.: Journal of Materials Science: Materials in Medicine, 10, 35.

    Google Scholar 

  9. Bordji, K., Jouzeau, J. Y., Mainard, D., Payan, E., Netter, P., Rie, K. T., et al. (1996). Biomaterials, 17, 929.

    Article  Google Scholar 

  10. Furlong, R., & Osborn, J. F. (2001). Journal of Bone and Joint Surgery, 73B, 741.

    Google Scholar 

  11. Kim,S.-S., Park, M. S., Jeon, O., Choi, C. Y., & Kim, B.-S. Biomaterials (in press).

    Google Scholar 

  12. Baker, K. C., Anderson, M. A., Oehlke, S. A., Astashkina, A. I., Haikio, D. C., Drelich, J., et al. Growth, Materials Science and Engineering: C (in press).

    Google Scholar 

  13. Sato, M., Slamovich, E. B., & Webster, T. J. (2005). Biomaterials, 26, 349.

    Article  Google Scholar 

  14. Bronzino, J. D. (1995). Biomedical engineering handbook (p. 274). Boca Raton: CRC Press.

    Google Scholar 

  15. Webster, T. J., & Ejiofor, J. U. (2004). Biomaterials, 25, 4731.

    Article  Google Scholar 

  16. Sul, Y. T., Johansson, C. B., Jeong, Y., & Albrektsson, T. (2001). Medical Engineering and Physics, 23, 329.

    Article  Google Scholar 

  17. Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z., & Dickey, E. C. (2001). Journal of Materials Research, 16, 3331.

    Article  Google Scholar 

  18. Mor, G. K., Varghese, O. K., Paulose, M., Mukherjee, N., & Grimesa, C. A. (2003). Journal of Materials Research, 18, 2588.

    Article  Google Scholar 

  19. Beranek, R., Hildebrand, H., & Schmuki, P. (2003). Electrochemical and Solid-State Letters, 6, B12.

    Article  Google Scholar 

  20. Tsuchiya, H., Macak, J. M., Taveira, L., Balaur, E., Ghicov, A., Sirotna, K., & Schmuki, P. (2005). Electrochemistry Communications, 7, 576.

    Article  Google Scholar 

  21. Cai, Q., Paulose, M., Varghese, O. K., & Grimes, C. A. (2005). Journal of Materials Research, 20, 230.

    Article  Google Scholar 

  22. Ruan, C., Paulose, M., Varghese, O. K., Mor, G. K., & Grimes, C. A. (2005). The Journal of Physical Chemistry B, 109, 15754.

    Article  Google Scholar 

  23. Macak, J. M., Tsuchiya, H., & Schmuki, P. (2005). Angewandte Chemie International Edition, 44, 2100.

    Article  Google Scholar 

  24. Ghicov, A., Tsuchiya, H., Macak, J. M., & Schmuki, P. (2005). Electrochemistry Communications, 7, 505.

    Article  Google Scholar 

  25. Raja, K. S., Misra, M., & Paramguru, K. (2005). Electrochimica Acta, 51, 154.

    Article  Google Scholar 

  26. Choi, J., Wehrspohn, R. B., Lee, J., & Gosele, U. (2004). Electrochimica Acta, 49, 2645.

    Article  Google Scholar 

  27. Chiesa, R., Sandrini, E., Santin, M., Rondelli, G., & Cigada, A. (2003). Journal of Applied Biomaterials and Biomechanics, 1, 91.

    Google Scholar 

  28. Zinger, O., Chauvy, P. F., & Landolt, D. (2003). Journal of the Electrochemical Society, 150, 495.

    Article  Google Scholar 

  29. Yang, B., Uchida, M., Kim, H.-M., Zhang, X., & Kokubo, T. (2004). Biomaterials, 25, 1003.

    Article  Google Scholar 

  30. Larsson, C., Thomsen, P., Aronsson, B.-O., Rodahl, M., Lausmaa, J., Kasemo, B., & Ericson, L. E. (1996). Biomaterials, 17, 605.

    Article  Google Scholar 

  31. Zhu, X., Chen, J., Scheideler, L., Reichl, R., & Geis-Gerstorfer, J. (2004). Biomaterials, 25, 4087.

    Article  Google Scholar 

  32. Li, L. H., Kong, Y. M., Kim, H. W., Kim, Y. W., Kim, H. E., Heo, S. J., & Koak, J. Y. (2004). Biomaterials, 25, 2867.

    Article  Google Scholar 

  33. Suh, J. Y., Jang, B. C., Zhu, X., Ong, J. L., & Kim, K. (2003). Biomaterials, 24, 347.

    Article  Google Scholar 

  34. Son, W. W., Zhu, X., Shin, H. I., Ong, J. L., & Kim, K. H. (2003). Journal of Biomedical Materials Research Part B: Applied Biomaterials, 66B, 520.

    Article  Google Scholar 

  35. Fini, M., Cigada, A., Rondelli, G., Chiesa, R., Giardino, R., Giavaresi, G., et al. (1999). Biomaterials, 20, 1587.

    Article  Google Scholar 

  36. Baun, W. L. (1980). Surface Technology, 11, 421.

    Article  Google Scholar 

  37. Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y., & Aucouturier, M. (1999). Surface and Interface Analysis, 27, 629.

    Article  Google Scholar 

  38. Kurze, P., Krysmann, W., & Schneider, H. G. (1986). Crystal Research and Technology, 21, 1603.

    Article  Google Scholar 

  39. Ishizawa, H., & Ogino, M. (1995). Journal of Biomedical Materials Research, 29, 1071.

    Article  Google Scholar 

  40. Oh, S.-H., Finõnes, R. R., Daraio, C., Chen, L.-H., & Jin, S. (2005). Biomaterials, 26, 4938.

    Article  Google Scholar 

  41. Delplancke, J. L., & Winand, R. (1973). Electrochimica Acta, 33, 1539.

    Article  Google Scholar 

  42. Schreckenback, J. P., Marx, G., Schlottig, F., Textor, M., & Spencer, N. D. (1999). Journal of Surface Science. Materials in Medicine, 10, 453.

    Article  Google Scholar 

  43. Ishizawa, H., & Ogino, M. (1995). Journal of Biomedical Materials Research, 29, 65.

    Article  Google Scholar 

  44. Lu, Y. P., Zhu, R. F., Li, S. T., Song, Y. J., Li, M. S., & Lei, T. Q. (2003). Materials Science and Technology, 19, 260.

    Article  Google Scholar 

  45. Yang, Y., & Ong, J. L. (2003). Journal of Biomedical Materials Research Part A, 64, 509.

    Article  Google Scholar 

  46. Yang, Y. C., Chang, E., & Lee, S. Y. (2003). Journal of Biomedical Materials Research Part A, 67, 886.

    Article  Google Scholar 

  47. Rodriguez, R., Kim, K., & Ong, J. L. (2003). Journal of Biomedical Materials Research Part A, 65, 352.

    Article  Google Scholar 

  48. Anselme, K. (2000). Biomaterials, 21, 667.

    Article  Google Scholar 

  49. Hayman, E. G., Pierschbacher, M. D., Suzuki, S., & Ruoslahti, E. (1985). Experimental Cell Research, 160, 245.

    Article  Google Scholar 

  50. Thomas, C. H., McFarland, C. D., Jenkins, M. L., Rezania, A., Steel, J. C., & Healy, K. E. (1997). Journal of Biomedical Materials Research, 37, 81.

    Article  Google Scholar 

  51. Henry, P., Tan, A. E., & Allan, B. P. (2000). Applied Osseointegration Research, 1, 15.

    Google Scholar 

  52. Sul, Y. T., Johansson, C. B., Jeong, Y., Wennerberg, A., & Albrektsson, T. (2002). Clinical Oral Implants Research, 13, 252.

    Article  Google Scholar 

  53. Sul, Y. T., Johansson, C. B., Roser, K., & Albrektsson, T. (2002). Biomaterials, 23, 1809.

    Article  Google Scholar 

  54. Ishizawa, H., Fugino, M., & Ogino, M. (1995). Journal of Biomedical Materials Research, 29, 1459.

    Article  Google Scholar 

  55. Giavaresi, G., Fini, M., & Cigada, A. (2003). Biomaterials, 24, 1583.

    Article  Google Scholar 

  56. Giavaresi, G., Fini, M., Cigada, A., Chiesa, R., Rondelli, G., Rimondini, L., et al. (2003). Journal of Biomedical Materials Research Part A, 67, 112.

    Article  Google Scholar 

  57. Son, W. W., Zhu, X., Shin, H. I., Ong, J. L., & Kim, K. H. (2003). Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 66B, 520.

    Article  Google Scholar 

  58. Ishizawa, H., Fujino, M., & Ogino, M. (1997). Journal of Biomedical Materials Research, 35, 199.

    Article  Google Scholar 

  59. Sul, Y. T. (2003). Biomaterials, 24, 3893.

    Article  Google Scholar 

  60. Feng, B., Wang, J., Yang, B. C., Qu, S. X., & Zhang, X. D. (2003). Biomaterials, 24, 4664.

    Article  Google Scholar 

  61. Boyan, B. D., Batzer, R., Kiesewetter, K., Lie, Y., Cochran, D. L., Szmuckler-Moncler, S., et al. (1998). Journal of Biomedical Materials Research, 39, 77.

    Article  Google Scholar 

  62. Karlsson, M., Palsgard, E., Wilshaw, P. R., & Silvio, L. D. (2003). Biomaterials, 24, 3039.

    Article  Google Scholar 

  63. Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R. W., & Bizios, R. (2001). Biomaterials, 22, 1327.

    Article  Google Scholar 

  64. Dunn, D. S., Raghaven, S., & Volz, R. G. (1994). Journal of Applied Biomaterials, 5, 325.

    Article  Google Scholar 

  65. Varkey, M., Gittens, S. A., & Uludag, H. (2004). Expert Opinion on Drug Delivery, 1, 19.

    Article  Google Scholar 

  66. Huang, H.-H., Pan, S.-J., Lai, Y.-L., Lee, T.-H., Chen, C.-C., & Lu, F.-H. (2004). Scripta Materialia, 51, 1017.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National Science Foundation Nanoscale Exploratory Research Grant for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Webster .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Webster, T.J., Yao, C. (2016). Anodization: A Promising Nano Modification Technique of Titanium-Based Implants for Orthopedic Applications. In: Ahmed, W., Jackson, M. (eds) Surgical Tools and Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-33489-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33489-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33487-5

  • Online ISBN: 978-3-319-33489-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics