Skip to main content

Titanium and Titanium Alloy Applications in Medicine

  • Chapter
  • First Online:
Book cover Surgical Tools and Medical Devices

Abstract

Titanium is a transition metal. It is present in several minerals including rutile and ilmenite, which are well dispersed over the Earth’s crust. Even though titanium is as strong as some steels, its density is only half of that of steel. Titanium is broadly used in a number of fields, including aerospace, power generation, automotive, chemical and petrochemical, sporting goods, dental and medical industries. The large variety of applications is due to its desirable properties, mainly the relative high strength combined with low density and enhanced corrosion resistance. This chapter discusses the applications of titanium and its alloys in the medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sibum, H. (2003). Titanium and titanium alloys—from raw material to semi-finished products. Advanced Engineering Materials, 5(6), 393.

    Google Scholar 

  2. Wang, K. (1996). The use of titanium for medical applications in the USA. Materials Science and Engineering A, 213, 134.

    Google Scholar 

  3. Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering C, 26, 1269.

    Google Scholar 

  4. Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions, 33A, 477.

    Google Scholar 

  5. Lütjering, G., & Williams, J. C. (2003). Titanium. Berlin: Springer-Verlag.

    Google Scholar 

  6. Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19, 1621.

    Google Scholar 

  7. Katti, K. S. (2004). Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces, 39, 133.

    Google Scholar 

  8. Disegi, J. A. (2000). Titanium alloys for fracture fixation implants, Injury. International Journal of the Care of the Injured, 31 (200) S-D14.

    Google Scholar 

  9. He, G., & Hagiwara, M. (2006). Ti alloy design strategy for biomedical applications. Materials Science and Engineering C, 26, 14.

    Google Scholar 

  10. Bannon, B. P., & Mild, E. E. (1983). Titanium alloys for biomaterial application: An overview, titanium alloys in surgical implants. In H. A. Luckey & F. Kubli, Jr (Eds.), American Society for Testing and materials (pp. 7–15). Pennsylvania: ASTM STP 796.

    Google Scholar 

  11. Oliveira, V., Chaves, R. R., Bertazzoli, R., & Caram, R. (1998). Preparation and characterization of Ti-Al-Nb orthopedic implants. Brazilian Journal of Chemical Engineering, 17, 326.

    Google Scholar 

  12. Boyer, R. R. (1996). Ana overview on the use of titanium in the aerospace industry. Materials Science and Engineering A, 213, 103.

    Google Scholar 

  13. Ferrero, J. G. (2005). Candidate materials for high-strength fastener applications in both the aerospace and automotive industries. Journal of Materials Engineering and Performance, 14, 691.

    Google Scholar 

  14. Semlitsch, M., Staub, F., & Weber, H. (1985). Titanium-aluminum-niobium alloy, development for biocompatible, high-strength surgical implants. Biomedizinische Technik, 30, 334.

    Google Scholar 

  15. Vail, T. P., Glisson, R. R., Koukoubis, T. D., & Guilak, F. (1998). The effect of hip stem material modulus on surface strain in human femora. Journal of Biomechanics, 31, 619.

    Google Scholar 

  16. Niinomi, M., Akahori, T., Takeuchi, T., Katsura, S., Fukui, H., & Toda, H. (2005). Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications. Materials Science and Engineering C, 25, 417.

    Google Scholar 

  17. Kikuchi, M., Takahashi, M., & Okuno, O. (2006). Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys. Dental Materials, 22, 641.

    Google Scholar 

  18. Kim, H. S., Kim, W.-Y., & Lim, S.-H. (2006). Microstructure and elastic modulus of Ti-Nb-Si ternary alloys for biomedical applications. Scripta Materialia, 54, 887–891.

    Google Scholar 

  19. Gross, S., & Abel, E. W. (2001). A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. Journal of Biomechanics, 34, 995.

    Google Scholar 

  20. Hao, Y. L., Niinomi, M., Kuroda, D., Fukunaga, K., Zhou, Y. L., & Yang, R. (2003). Aging response of the Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr. Metallurgical and Materials Transactions, 34A, 1007–1012.

    Google Scholar 

  21. Hao, Y. L., Niinomi, M., Kuroda, D., Fukunaga, K., Zhou, Y. L., Yang, R., et al. (2002). Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite. Metallurgical and Materials Transactions, 33A, 3137–3144.

    Google Scholar 

  22. Gunawarman, B., Niinomi, M., Akahori, T., Souma, T., Ikeda, M., & Toda, H. (2005). Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications. Materials Science and Engineering C, 25, 304.

    Google Scholar 

  23. Sakaguchi, N., Niinomi, M., Akahori, T., Takeda, J., & Toda, H. (2005). Relationship between tensile deformation behavior and microstructure in Ti-Nb-Ta-Zr. Materials Science and Engineering C, 25, 363.

    Google Scholar 

  24. Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering A, 243, 244.

    Google Scholar 

  25. Peters, M., Hemptenmacher, H., Kumpfert, J., & Leyens, C. (2003). In C. Leyens & M. Peters (Eds.), Titanium and Titanium Alloys (pp. 1–57). New York: Wiley-VCH.

    Google Scholar 

  26. Ari-Gur, P., & Semiatin, S. L. (1998). Evolution of microstructure, macrotexture and microtexture during hot rolling og Ti-6Al-4V. Materials Science and Engineering A, 257, 118.

    Google Scholar 

  27. Lütjering, G. (1999). Property optimization through microstructural control in titanium and aluminum alloys. Materials Science and Engineering A, 263, 117.

    Google Scholar 

  28. Prasad, Y. V. R. K., & Seshacharyulu, T. (1998). Processing maps for hot working of titanium alloys. Materials Science and Engineering A, 243, 82.

    Google Scholar 

  29. Freese, H. L., Volas, M. G., & Wood, J. R. in: D. M. Brunette, P. Tengvall, M. Textor & P. Thomsen (Eds.), Titanium in medicine (pp. 25–51). New York: Springer.

    Google Scholar 

  30. Froes, F. H., & Bomberger, H. B. (1985). The beta titanium alloys. Journal of Metals, 37, 28.

    Google Scholar 

  31. Karasevskaya, O. P., Ivasishin, O. M., Semiatin, S. L., & Matviychuk, Y. V. (2003). Deformation behavior of beta-titanium alloys. Materials Science and Engineering A, 354, 121.

    Google Scholar 

  32. Lin, D. J., Chern, J. H., & Ju, C. P. (2002). Effect of omega phase on deformation behavior of Ti-7.5Mo-xFe alloys. Materials Chemistry and Physics, 76, 191.

    Google Scholar 

  33. Moffat, D. L., & Larbalestier, D. C. (1988). The competition between the alpha and omega phases in aged Ti-Nb alloys. Metallurgical Transactions, 19A, 1687.

    Google Scholar 

  34. Flower, H. M., Henry, S. D., & West, D. R. F. (1974). The βα ⇆ αβ transformation in dilute Ti-Mo alloys. Journal of Materials Science, 9, 57.

    Google Scholar 

  35. Tang, X., Ahmed, T., & Rack, H. J. (2000). Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys. Journal of Materials Science, 35, 1805.

    Google Scholar 

  36. Dobromyslov, A. V., & Elkin, V. A. (2003). Martensitic transformation and metastable b-phase in binary titanium alloys with d-metals of 4–6 periods. Materials Science and Engineering A, 354, 121.

    Google Scholar 

  37. Dobromyslov, A. V., & Elkin, V. A. (2006). The orthorhombic α″-phase in binary titanium base alloys with d-metals of V–VIII groups. Materials Science and Engineering A, 438, 324–326 (in press).

    Google Scholar 

  38. Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A, 243, 231.

    Google Scholar 

  39. Brunski, J. B. (2004). In B. D. Ratner, A. S. Hoffman, F. J. Schoen, & J. E. Lemons (Eds.), Biomaterials science—an introduction to materials in medicine (pp. 137–153). San Diego: Elsevier Academic Press.

    Google Scholar 

  40. Wataria, F., Yokoyamaa, A., Omorib, M., Hiraic, T., Kondoa, H., Uoa, M., & Kawasakia, T. (2004). Biocompatibility of materials and development to functionally graded implant for bio-medical application. Composites Science and Technology, 64, 893–908.

    Google Scholar 

  41. Black, J. (1992). Biological performance of materials (2nd ed.). New York: M. Dekker Inc.

    Google Scholar 

  42. Park, J. B., & Kim, J. B. (2000). Metallic biomaterials, chapter 37. In J. D. Bronzino & B. Raton (eds.), The biomedical engineering handbook, (2nd ed.). Boca Raton: CRC Press LLC.

    Google Scholar 

  43. Feighan, J. E., Goldberg, V. M., Davy, D., Parr, J. A., & Stevenson, S. (1995). The influence of surfaceblasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. The Journal of Bone & Joint Surgery. American Volume, 77A, 1380–1395.

    Google Scholar 

  44. Tengvall, P., & Lundstrom, I. (1992). Physico-chemical considerations of titanium as a biomaterial. Clinical Materials, 9, 115–134.

    Google Scholar 

  45. Henrich, V. E., & Cox, P. A. (1994). The surface science of metal oxides. Cambridge: Cambridge University Press.

    Google Scholar 

  46. Thull, R., & Grant, D. (2001). Physical and chemical vapor deposition and plasma-assisted techniques for coating titanium. In D. M. Brunette, P. Tengvall, M. Textor & P. Thomsen (Eds.), Titanium in medicine (pp. 284–335). Berlin Heidelberg: Springer-Verlang.

    Google Scholar 

  47. Klocke, F. (2001). Manufacturing technology I. Aachen: WZL-RWTH.

    Google Scholar 

  48. Jackson, M. J., & Morrell, J. S. (Eds.). (2015). Machining with Nanomaterials (2nd ed.). New York and Heidelberg: Springer.

    Google Scholar 

  49. Donachie, M. (2000). Titanium—a technical guide (2nd ed.). Materials Park, OH: ASM International.

    Google Scholar 

  50. Iqbal, S. A., Mativenga, P. T., & Sheikh, M. A. (2009). A comparative study of the tool-chip contact length in turning of two engineering alloys for a wide range of cutting speeds. International Journal of Advanced Manufacturing Technology, 42, 30–40.

    Google Scholar 

  51. Sun, J., & Guo, Y. B. (2008). A new multi view approach to characterize 3D chip morphology and properties in end milling titanium Ti6Al4V. International Journal of Machine Tools and Manufacture, 48, 1486–1494.

    Google Scholar 

  52. Cotterell, M., & Byrne, G. (2008). Dynamics of chip formation during orthogonal cutting of titanium alloy Ti-6Al-4V. CIRP Annals - Manufacturing Technology, 57, 93–96.

    Google Scholar 

  53. Barry, J., Byrne, G., & Lennon, D. (2000). Observations on chip formation and acoustic emission in machining. International Journal of Machine Tools and Manufacture, 41, 1055–1070.

    Google Scholar 

  54. Fang, N. (2003). Slip-line modeling of machining with a rounded-edge tool—Part II: Analysisof the size efect and the shear strain-rate. Journal of the Mechanics and Physics of Solids, 51, 43–762.

    Google Scholar 

  55. Komanduri, R. (1982). Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear, 76, 15–34.

    Google Scholar 

  56. Abdelmoneim, M. E., & Scrutton, R. F. (1973). Post-machining plastic recovery and the law of abrasive wear. Wear, 24, 1–13.

    Google Scholar 

  57. Komanduri, R. (1971). Aspects of machining with negative rake tools simulating grinding. International Journal of Design and Research MTDR, 11, 223–233.

    Google Scholar 

  58. Rubenstein, C., Groszman, F. K., & Koenigsberger, F. (1967). Force measurements during cutting tests with single point tools simulating action of single abrasive grit. Paper presented at the International Industrial Diamond Conference.

    Google Scholar 

  59. Puerta Velasquez, J. D., Bolle, B., Chevrier, P., Geandier, G., & Tidu, A. (2007). Metallurgical study on chips obtained by high speed machining of a Ti-6 wt.%Al-4 wt.%V alloy. Materials Science and Engineering A, 452–453, 469–474.

    Google Scholar 

  60. Vyas, A., & Shaw, M. C. (1999). Mechanics of Saw-Tooth Chip Formation in Metal Cutting. Journal of Manufacturing Science and Engineering, 121, 163–172.

    Google Scholar 

  61. Morshed, M. M., McNamara, B. P., Cameron, D. C., & Hashmi, M. S. J. (2003). Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source. Journal of Materials Processing Technology, 143, 922–926.

    Google Scholar 

  62. Hench, L. L., Splittr, R. J., Allen, W. C., & Greenlec, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 2, 117–141.

    Google Scholar 

  63. de Groot, K., Klein, C. P. A. T., Wolke, J. G. C., & de Blieck-Hogervorst, J. M. A. (1990). Plasma-sprayed coatings of calcium phosphate, CRC handbook of bioactive ceramics (Vol. 2, pp. 133–142). Boston: CRC Press.

    Google Scholar 

  64. Hulth, A. (1989). Current concepts of fracture healing. Clinical Orthopaedics and Related Research, 249–265.

    Google Scholar 

  65. Hutzschenreuter, P., & Brümmer, H. (1980). Screw design and stability. In H. Uhthoff (Ed.), Current concepts of Internal Fixation (pp. 244–250). Berlin: Springer-Verlag.

    Google Scholar 

  66. Cochran, G. V. B. (1982). Biomechanics of orthopaedic structures. In Primer in orthopaedic biomechanics (pp. 143–215). New York: Churchill Livingstone.

    Google Scholar 

  67. Sarmiento, A., Ebramzadeh, E., & Gogan, W. J. (1990). Cup containment and orientation in cemented total hip arthroplasties. Journal of Bone & Joint Surgery, 72B(6), 996.

    Google Scholar 

  68. Burstein, A. H., & Wright, T. H. (1993). Biomechanics. In J. Insall, R Windsor & W. Scott (Eds.), Surgery of the knee (2nd ed., Vol. 7) (pp. 43–62). New York: Churchill Livingstone.

    Google Scholar 

  69. Perren, M. S., Pohler, O. E. M., & Schneider, E. (2001). Titanium as implant material for osteosynthesis applications. In D. M. Brunette, P. Tengvall, M. Textor & P. Thomsen (Eds.), Titanium in medicine (pp. 772–823). Berlin Heidelberg: Springer-Verlang.

    Google Scholar 

  70. Olander, A. (1932). An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society, 54, 3819–3833.

    Google Scholar 

  71. Greninger, A. B., & Mooradian, V. G. (1938). Strain transformation in metastable beta copper-zinc and beta copper-tin alloys. AIME, 128, 337–368.

    Google Scholar 

  72. Chang, L. C., & Read, T. A. (1951). Plastic deformation and diffusionless phase changes in metals-the gold-cadmium beta phase. Transaction of the American Institute of Mining and Metallurgical Engineers, 191(1), 47–52.

    Google Scholar 

  73. Buehler, W. J., & Wang, F. E. (1967). A summary of recent research on the Nitinol alloys and their potential application in ocean engineering. Journal of Ocean Engineering, 1, 105–108.

    Google Scholar 

  74. Wayman, C. M. (1964). Introduction to the crystallography of martensitic transformations. UK: The Macmillan Company.

    Google Scholar 

  75. Otsuka, K., & Wayman, C. M. (1998). Shape memory materials. Cambridge: Cambridge University Press.

    Google Scholar 

  76. Wechsler, M. S., Liberman, D. S., & Read, T. A. (1953). On the theory of the formation of martensite. Transaction of the AIME, 197, 1503–1515.

    Google Scholar 

  77. Bowles, J. S., & Mackenzie, J. K. (1954). The crystallography of martensite transformations I. Acta Metallurgica, 2, 129–137.

    Google Scholar 

  78. Saburi, T., & Wayman, C. M. (1979). Crystallographic similarities in shape memory martensites. Acta Metallurgica, 27(6), 979–995.

    Google Scholar 

  79. Adachi, K., Perkins, J., & Wayman, C. M. (1986). Type II twins in self-accommodating martensite plate variants in a Cu-Zn-Al shape memory alloy. Acta Metallurgica, 34(12), 2471–2485.

    Google Scholar 

  80. James, R. D., & Hane, K. F. (2000). Martensitic transformations and shape-memory materials. Acta Materialia, 48(1), 197–222.

    Google Scholar 

  81. Krishnan, Madangopal. (1998). The self accommodating martensitic microstructure of Ni-Ti shape memory alloys. Acta Materialia, 46(4), 1439–1457.

    Google Scholar 

  82. Inamura, T., Kinoshita, Y., Kim, J. I., Kim, H. Y., Hosoda, H., Wakashima, K., et al. (2006). Effect of {0 0 1} < 1 1 0 > texture on superelastic strain of Ti-Nb-Al biomedical shape memory alloys. Materials Science and Engineering A, 438, 865–869 (In Press).

    Google Scholar 

  83. Bhattacharya, K. (2003). Microstructure of martensite: Why it forms and how it gives rise to the shape-memory effect, Oxford series on materials modelling (1st ed.). Oxford: Oxford University Press.

    MATH  Google Scholar 

  84. Stalmans, R., Delaey, L., & Van Humbeeck, J. (1997). Generation of recovery stresses: Thermodynamic modelling and experimental verification. Le Journal de Physique IV, 7, 47–52.

    Google Scholar 

  85. Barsch, G. R., & Krumhansl, J. A. (1984). Twin boundaries in ferroelastic media without interface dislocations. Physical Review Letters, 53(11), 1069–1072.

    Google Scholar 

  86. Falk, F. (1980). Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metallurgica, 28, 1773–1780.

    Google Scholar 

  87. Maugin, G. A., & Cadet, S. (1991). Existence of solitary waves in martensitic alloys. International Journal of Engineering Science, 29(2), 243–258.

    MathSciNet  MATH  Google Scholar 

  88. Brinson, L. C., & Lammering, R. (1993). Finite element analysis of the behavior of shape memory alloys and their applications. International Journal of Solids and Structures, 30(23), 3261–3280.

    MATH  Google Scholar 

  89. Ivshin, Y., & Pence, T. J. (1993). A thermomechanical model for a one variant shape memory material. Journal of Intelligent Material Systems and Structures, 5(7), 455–473.

    Google Scholar 

  90. Liang, C., & Rogers, C. A. (1990). One-dimensional thermomechanical constitutive relations for shape memory materials. Journal of Intelligent Material Systems and Structures, 1(2), 207–234.

    Google Scholar 

  91. Boyd, J. G., & Lagoudas, D. C. (1994). Thermomechanical response of shape memory composites. Journal of Intelligent Material Systems and Structures, 5, 333–346.

    Google Scholar 

  92. Tanaka, K. (1986). A thermomechanical sketch of shape memory effect: One-dimensional tensile behavior. Res Mechanica, 18, 251–263.

    Google Scholar 

  93. Brinson, L. C. (1993). One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of Intelligent Material Systems and Structures, 4, 229–242.

    Google Scholar 

  94. Lubliner, J., & Auricchio, F. (1996). Generalized plasticity and shape-memory alloys. International Journal of Solids and Structures, 33(7), 991–1003.

    MATH  Google Scholar 

  95. Panoskaltsis, V. P., Bahuguna, S., & Soldatos, D. (2004). On the thermomechanical modeling of shape memory alloys. International Journal of Non-Linear Mechanics, 39(5), 709–722.

    MATH  Google Scholar 

  96. Sun, Q. P., & Hwang, K. C. (1994). Micromechanics constitutive description of thermoelastic martensitic transformations. Advances in Applied Mechanics, 31, 249–298.

    MATH  Google Scholar 

  97. Kosel, F., & Videnic, T. (2007). Generalized plasticity and uniaxial constrained recovery in shape memory alloys. Mechanics of Advanced Materials and Structures, 14(1), 3–12.

    Google Scholar 

  98. Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42, 35–56.

    Google Scholar 

  99. Nieboer, E., Tom, R. T., & Sanford, W. E. (1988). Nickel metabolism in man and animals. In H. Sigel (Ed.), Nickel and its role in biology: Metal ions in biological systems (Vol. 23, pp. 91–121). New York: Marcel Dekker.

    Google Scholar 

  100. Fletcher, G. G., Rossetto, F. E., Turnbull, J. D., & Nieboer, E. (1994). Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds. Environmental Health Perspectives, 102(Suppl 3), 69–79.

    Google Scholar 

  101. Yamamoto, A., Honma, R., & Sumita, M. (1998). Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. Journal of Biomedical Materials Research, 39, 331–340.

    Google Scholar 

  102. Shih, C., Lin, S., Chung, K., Chen, Y., Su, Y., Lai, S., et al. (2000). The cytotoxicity of corrosion products of Nitinol stent wires on cultured smooth muscle cells. Journal of Biomedical Material Research, 52, 395–403.

    Google Scholar 

  103. Wever, D. J., Veldhuizen, A. G., Sanders, M. M., Schakenraad, J. M., & Horn, J. R. (1997). Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials, 18, 1115–1120.

    Google Scholar 

  104. Wataha, I. C., Lockwood, P. E., Marek, M., & Ghazi, M. (1999). Ability of Ni-containing biomedical alloys to activate monocytes and endothelial cells in vitro. Journal of Biomedical Materials Research, 45, 251–257.

    Google Scholar 

  105. Ryhänen, J., Niemi, E., Serlo, W., Niemelä, E., Sandvik, P., Pernu, H., et al. (1997). Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. Journal of Biomedical Materials Research, 35, 451–457.

    Google Scholar 

  106. Wirth, C., Comte, V., Lagneau, C., Exbrayat, P., Lissac, M., Jaffrezic-Renault, N., et al. (2005). Nitinol surface roughness modulates in vitro cell response: A comparison between fibroblasts and osteoblasts. Materials Science and Engineering C, 25, 51–60.

    Google Scholar 

  107. Trepanier, C., Leung, T., Tabrizian, M., Yahia, L. H., Bienvenu, J., Tanguay, J., et al. (1999). Preliminary investigation of the effect of surface treatment on biological response to shape memory NiTi stents. Journal of Biomedical Materials Research, 48, 165–171.

    Google Scholar 

  108. Shabalovskaya, S. A. (2002). Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Bio-Medical Materials and Engineering, 12, 69–109.

    Google Scholar 

  109. Shabalovskaya, S. A. (1996). On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. BioMedical Materials and Engineering, 6, 267–289.

    Google Scholar 

  110. Frauchiger, V. M., Schlottig, F., Gasser, B., & Textor, M. (2004). Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials, 25, 593–606.

    Google Scholar 

  111. Lu, X., Zhao, Z., & Leng, Y. (2006). Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Materials Science and Engineering: C, 27(4), 700–708 (in Press).

    Google Scholar 

  112. Park, J., Kim, D. J., Kim, Y. K., Lee, K. H., Lee, K. H., Lee, H., et al. (2003). Improvement of the biocompatibility and mechanical properties of surgical tools with TiN coating by PACVD. Thin Solid Films, 435(1–2), 102–107.

    Google Scholar 

  113. Shevchenko, N., Pham, M. T., & Maitz, M. F. (2004). Studies of surface modified NiTi alloy. Applied Surface Science, 235, 126–131.

    Google Scholar 

  114. Endo, K. (1995). Chemical modification of metallic implant surfaces with biofunctional proteins (Part 1). Molecular structure and biological activity of a modified NiTi alloy surface. Dental Materials Journal, 14, 185–198.

    Google Scholar 

  115. Liu, F., Wang, F., Shimizu, T., Igarashi, K., & Zhao, L. (2006). Hydroxyapatite formation on oxide films containing Ca and P by hydrothermal treatment. Ceramics International, 32(5), 527–531.

    Google Scholar 

  116. Schillinger, M., Sabeti, S., & Loewe, C. (2006). Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. Journal of Vascular Surgery, 44(3), 684.

    Google Scholar 

  117. Rapp, B. (2004). Nitinol for stents. Materials Today, 7(5), 13.

    Google Scholar 

  118. Tyagi, S., Singh, S., Mukhopadhyay, S., & Kaul, U. A. (2003). Self- and balloon-expandable stent implantation for severe native coarctation of aorta in adults. American Heart Journal, 146(5), 920–928.

    Google Scholar 

  119. Simon, M., Kaplow, R., Salzman, E., & Freiman, D. (1977). A vena cava filter using thermal shape memory alloy experimental aspects. Radiology, 125, 87–94.

    Google Scholar 

  120. Duerig, T., Pelton, A., & Stöckel, D. (1999). An overview of nitinol medical applications. Materials Science and Engineering, A273–275, 149–160.

    Google Scholar 

  121. Fischer, H., Vogel, B., Grünhagen, A., Brhel, K. P., & Kaiser, M. (2002). Applications of shape-memory alloys in medical instruments. Materials Science Forum, V, 394–395, 9–16.

    Google Scholar 

  122. Pelton, A. R., Stöckel, D., & Duerig, T. W. (2000). Medical uses of nitinol. Materials Science Forum, 327–328, 63–70.

    Google Scholar 

  123. Dai, K., Wu, X., & Zu, X. (2002). An investigation of the selective stress-shielding effect of shape-memory sawtooth-arm embracing fixator. Materials Science Forum, 394–395, 17–24.

    Google Scholar 

  124. Zhang, C., Xu, S., Wang, J., Yu, B., & Zhang, Q. (2002). Design and clinical applications of swan-like memory-compressive connector for upper-limb diaphysis. Materials Science Forum, 394–395, 33–36.

    Google Scholar 

  125. Da, G., Wang, T., Liu, Y., & Wang, C. (2002). Surgical treatment of tibial and femoral factures with TiNi Shape-memory alloy interlocking intramedullary nails. Materials Science Forum, 394–395, 37–40.

    Google Scholar 

  126. Song, C., Frank, T. G., Campbell, P. A., & Cuschieri, A. (2002). Thermal modelling of shape—memory alloy fixator for minimal-access surgery. Materials Science Forum, 394–395, 53–56.

    Google Scholar 

  127. Xu, S., Zhang, C., Li, S., Su, J., & Wang, J. (2002). Three-dimensional finite element analysis of nitinol patellar concentrator. Materials Science Forum, 394–395, 45–48.

    Google Scholar 

  128. Chu, Y., Dai, K., Zhu, M., & Mi, X. (2000). Medical application of NiTi shape memory alloy in China. Materials Science Forum, 327–328, 55–62.

    Google Scholar 

  129. Kokubo, T., Kim, H. M., & Kawashita, M. (2003). Novel bioactive materials with different mechanical properties. Biomaterials, 24(13), 2161–2175.

    Google Scholar 

  130. Lima-L to SpA, Medical Systems, Via Nazionale 52, 33030 Villanova di San Daniele del Friuli (Udine), Italy. http://www.lima.it/english/medical_syst.html

  131. Combes, C., Rey, C., & Freche, M. (1998). XPS and IR study of dicalcium phosphate dihydrate nucleation on titanium surfaces. Colloids and Surfaces B: Biointerfaces, 11(1–2), 15–27.

    Google Scholar 

Download references

Acknowledgments

The authors thank Springer and Wiley publishers for allowing the authors permission to reprint and update this chapter that was originally published in, ‘Surface Engineered Surgical Tools and Medical Devices,’ originally published by Springer in 2007 (ISBN 978-0387-27026-5). The authors also wish to thank Springer for allowing the authors to update the chapter with material that was published in ‘Machining with Nanomaterials’ also published by Springer. Reprinted with kind permission from Springer Science + Business Media B.V and Wiley Publishers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jackson, M.J., Kopac, J., Balazic, M., Bombac, D., Brojan, M., Kosel, F. (2016). Titanium and Titanium Alloy Applications in Medicine. In: Ahmed, W., Jackson, M. (eds) Surgical Tools and Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-33489-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33489-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33487-5

  • Online ISBN: 978-3-319-33489-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics