Skip to main content

Topology of Quantum Mechanical Current Density Vector Fields Induced in a Molecule by Static Magnetic Perturbations

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 22))

Abstract

It is shown that the quantum mechanical theory of static magnetic properties can be reformulated in terms of electronic current densities induced by an external magnetic field and permanent magnetic dipole moments at the nuclei. Theoretical relationships are reported to evaluate magnetizability, nuclear magnetic shielding and nuclear spin-spin coupling via the equations of classical electromagnetism, assuming that the current density is evaluated by quantum mechanical methods. Emphasis is placed on the advantage of the proposed formulation, as an alternative to procedures based on perturbation theory, as regards interpretation of response allowing for the ideas of current density tensor and current susceptibility vector. Visualisation of the electronic interaction with a magnetic field and intramolecular perturbations, e.g., nuclear magnetic dipoles, is made possible via current density maps, nuclear shielding density maps and plots of nuclear spin-spin coupling density. Topological analysis of the quantum mechanical current density in terms of Gomes stagnation graphs is shown to yield fundamental information for understanding magnetic response. Examples are given for a few archetypal molecules. A topological definition of delocalized electron currents is proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See Eq. (8a) of Ref. [34]. By combining the first two addenda on the l.h.s. of Eq. (2) of Ref. [36], a quantum-mechanical relationship of the same form as the Newton’s second law is obtained for a particle acted upon by the Lorentz force and by the nonlocal Bohm potential, see Eq. (94) of Ref. [15].

  2. 2.

    The f function is fully arbitrary, provided it is continuous and has the physical dimensions of a magnetic flux density times the square of length. It is well-behaved for \( {\kern 1pt} r \to \infty \) and satisfies the condition \( \nabla^{2} f = 0 \).

  3. 3.

    The topological index \( \iota \) counts the number of times that the current density vector \( \varvec{J}^{{\mathbf{B}}} \) rotates completely while one walks counterclockwise around a circle of radius \( \epsilon \), so small that \( \varvec{J}^{{\mathbf{B}}} \) has no zeroes inside except the SP at its centre. The topological index \( \iota \) of a saddle (vortex) line is −1 (+1). Both SPs have \( (r,s) = (2,0) \).

  4. 4.

    If the eigenvalues are complex one defines the signature as the difference between the number of eigenvalues having a positive real part and the number of eigenvalues having a negative real part.

References

  1. Hirschfelder JO (1978) J Chem Phys 68:5151

    Article  CAS  Google Scholar 

  2. Lazzeretti P (1989) Adv Chem Phys 75:507

    Google Scholar 

  3. Lazzeretti P (2003) Electric and magnetic properties of molecules. In: Wilson S (ed) Handbook of molecular physics and quantum chemistry, vol 3, Part 1, Chapter 3. Wiley, Chichester, pp 53–145

    Google Scholar 

  4. Lazzeretti P (2013) Electronic current densities induced by magnetic fields and nuclear magnetic dipoles. Theory and computation of NMR spectral parameters, volume 3 of High resolution NMR spectroscopy, science and technology of atomic, molecular, condensed matter and biological systems. Elsevier, New York

    Google Scholar 

  5. Lazzeretti P (2014) Int J Quantum Chem 114:1364

    Article  CAS  Google Scholar 

  6. Landau LD, Lifshitz EM (1981) Quantum mechanics. Pergamon Press, Oxford

    Google Scholar 

  7. Hirschfelder JO, Brown WB, Epstein S (1964) Adv Quantum Chem 1:255

    Article  CAS  Google Scholar 

  8. Van Vleck JH (1932) The theory of electric and magnetic susceptibilities. Oxford University Press, Oxford

    Google Scholar 

  9. Ramsey NF (1950) Phys Rev 78:699

    Article  CAS  Google Scholar 

  10. Ramsey NF (1951) Phys Rev 83:540

    Article  CAS  Google Scholar 

  11. Ramsey NF (1952) Phys Rev 86:243

    Article  CAS  Google Scholar 

  12. Ramsey NF, Purcell EM (1952) Phys Rev 85:143

    Article  CAS  Google Scholar 

  13. Ramsey NF (1953) Phys Rev 91:303

    Article  CAS  Google Scholar 

  14. Emsley JW, Feeney J, Sutcliffe LH (1967) High resolution nuclear magnetic resonance spectroscopy. Pergamon Press, Oxford, pp 10–13

    Google Scholar 

  15. Lazzeretti P (2000) Ring currents. In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in nuclear magnetic resonance spectroscopy, vol 36. Elsevier, pp 1–88

    Google Scholar 

  16. Soncini A, Lazzeretti P (2005) Chem Phys Lett 409:177

    Article  CAS  Google Scholar 

  17. Zubarev DN (1974) Nonequilibrium statistical thermodynamics. Consultants Bureau, New York

    Google Scholar 

  18. Jørgensen P, Simons J (1981) Second quantization-based method in quantum chemistry. Academic Press, New York

    Google Scholar 

  19. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley, Chichester

    Book  Google Scholar 

  20. Sauer SPA (2011) Molecular electromagnetism: a computational chemistry approach. Oxford University Press, Oxford

    Book  Google Scholar 

  21. Taylor PR (1994) Lecture notes in quantum chemistry, European summer school in quantum chemistry. In: Roos BO (ed). Springer, Berlin

    Google Scholar 

  22. Bartlett RJ (1995) Modern electronic structure theory. In: Yarkony DR (ed). World Scientific, Singapore

    Google Scholar 

  23. Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291

    Article  CAS  Google Scholar 

  24. Jusélius J, Sundholm D, Gauss J (2004) J Chem Phys 121:3952

    Article  CAS  Google Scholar 

  25. Lin Y-C, Jusélius J, Sundholm D, Gauss J (2005) J Chem Phys 122:214308

    Article  CAS  Google Scholar 

  26. Fliegl H, Sundholm D, Taubert S, Jusélius J, Klopper W (2009) J Phys Chem A 113:8668

    Article  CAS  Google Scholar 

  27. Fliegl H, Taubert S, Lehtonen O, Sundholm D (2011) Phys Chem Chem Phys 13:20500

    Article  CAS  Google Scholar 

  28. Schrödinger E (1926) Ann Phys (Leipzig) 81:109

    Article  Google Scholar 

  29. Madelung E (1926) Z Phys 40:322

    Article  Google Scholar 

  30. de Broglie L (1926) C R Acad Sci (Paris) 183:447

    Google Scholar 

  31. de Broglie L (1927) C R Acad Sci (Paris) 184:273

    Google Scholar 

  32. Landau L (1941) J Phys USSR 5:71

    CAS  Google Scholar 

  33. London F (1945) Rev Mod Phys 17:310

    Article  Google Scholar 

  34. Bohm D (1952) Phys Rev 85:166

    Article  CAS  Google Scholar 

  35. Bohm D (1952) Phys Rev 85:180

    Article  CAS  Google Scholar 

  36. Bialynicki-Birula I, Bialynicka-Birula Z (1971) Phys Rev D 3:2410

    Article  Google Scholar 

  37. Hirschfelder JO, Christoph AC (1974) J Chem Phys 61:5435

    Article  CAS  Google Scholar 

  38. Hirschfelder JO, Goebel CJ, Bruch LW (1974) J Chem Phys 61:5456

    Article  CAS  Google Scholar 

  39. Hirschfelder JO, Tang KT (1976) J Chem Phys 64:760

    Article  CAS  Google Scholar 

  40. Hirschfelder JO, Tang KT (1976) J Chem Phys 65:470

    Article  CAS  Google Scholar 

  41. Takabayasi T (1957) Progress Theor Phys Suppl 4:1

    Article  Google Scholar 

  42. Holland PR (1993) The quantum theory of motion. Cambridge University Press, New York

    Book  Google Scholar 

  43. Bohm D, Hiley BJ, Kaloyerou PN (1987) Phys Rep 144:321

    Article  CAS  Google Scholar 

  44. Cushing JT, Fine A, Goldstein S (eds) (1996) Bohmian mechanics: an appraisal. Kluwer, Boston

    Google Scholar 

  45. Faglioni F, Ligabue L, Pelloni S, Soncini A, Viglione RG, Ferraro MB, Zanasi R, Lazzeretti P (2005) Org Lett 7:3457

    Google Scholar 

  46. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York, pp 175–178

    Google Scholar 

  47. Ferraro MB, Lazzeretti P, Viglione RG, Zanasi R (2004) Chem Phys Lett 390:268

    Article  CAS  Google Scholar 

  48. Pelloni S, Ligabue A, Lazzeretti P (2004) Org Lett 6:4451

    Article  CAS  Google Scholar 

  49. Soncini A, Fowler PW, Lazzeretti P, Zanasi R (2005) Chem Phys Lett 401:164

    Article  CAS  Google Scholar 

  50. Ferraro MB, Faglioni F, Ligabue A, Pelloni S, Lazzeretti P (2005) Magn Res Chem 43:316

    Article  CAS  Google Scholar 

  51. Soncini A, Lazzeretti P (2003) J Chem Phys 118:7165

    Article  CAS  Google Scholar 

  52. Soncini A, Lazzeretti P (2003) J Chem Phys 119:1343

    Article  CAS  Google Scholar 

  53. Jameson CJ, Buckingham AD (1979) J Phys Chem 83:3366

    Article  CAS  Google Scholar 

  54. Jameson CJ, Buckingham AD (1980) J Chem Phys 73:5684

    Article  CAS  Google Scholar 

  55. Gomes JANF (1983) J Chem Phys 78:4585

    Article  CAS  Google Scholar 

  56. Gomes JANF (1983) Phys Rev A 28:559

    Article  CAS  Google Scholar 

  57. Gomes JANF (1983) J Mol Struct (THEOCHEM) 93:111

    Google Scholar 

  58. Hamermesh M (1972) Group theory and its applications to physical problems. Addison-Wesley, London

    Google Scholar 

  59. McWeeny R (1989) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  60. Pelloni S, Lazzeretti P (2012) J Chem Phys 136:164110

    Article  CAS  Google Scholar 

  61. Lazzeretti P, Malagoli M, Zanasi R (1994) J Mol Struct (Theochem) 313:299

    Article  Google Scholar 

  62. Soncini A, Lazzeretti P (2006) ChemPhysChem 7:679

    Article  CAS  Google Scholar 

  63. Lazzeretti P (2012) J Chem Phys 137:074108

    Article  CAS  Google Scholar 

  64. Raynes WT (1992) Magn Reson Chem 30:686

    Article  CAS  Google Scholar 

  65. Epstein ST (1974) The variation method in quantum chemistry. Academic Press, New York

    Google Scholar 

  66. Arrighini GP, Maestro M, Moccia R (1970) J Chem Phys 52:6411

    Article  CAS  Google Scholar 

  67. Arrighini G, Maestro M, Moccia R (1970) Chem Phys Lett 7:351

    Article  CAS  Google Scholar 

  68. Lazzeretti P, Zanasi R (1980) J Chem Phys 72:6768

    Article  CAS  Google Scholar 

  69. Lazzeretti P, Zanasi R (1977) Int J Quantum Chem 12:93

    Article  CAS  Google Scholar 

  70. Lazzeretti P, Malagoli M, Zanasi R (1991) Chem Phys 150:173

    Article  CAS  Google Scholar 

  71. Lazzeretti P, Malagoli M, Zanasi R (1994) Chem Phys Lett 220:299

    Article  CAS  Google Scholar 

  72. Epstein ST (1973) J Chem Phys 58:1592

    Article  CAS  Google Scholar 

  73. Landau LD, Lifshitz EM (1979) The classical theory of fields, 4th edn. Pergamon Press, Oxford

    Google Scholar 

  74. Arrighini GP, Maestro M, Moccia R (1968) J Chem Phys 49:882

    Article  CAS  Google Scholar 

  75. Lazzeretti P (2012) Theor Chem Acc 131:1 (and references therein)

    Article  CAS  Google Scholar 

  76. Monaco G, Zanasi R, Pelloni S, Lazzeretti P (2010) J Chem Theor Comput 6:3343

    Article  CAS  Google Scholar 

  77. Pelloni S, Lazzeretti P (2011) J Phys Chem A 115:4553

    Article  CAS  Google Scholar 

  78. Hirschfelder JO (1977) J Chem Phys 67:5477

    Article  CAS  Google Scholar 

  79. Takabayasi T (1952) Progress Theoret Phys 8:143

    Article  Google Scholar 

  80. Takabayasi T (1953) Progress Theoret Phys 9:187

    Article  Google Scholar 

  81. Riess J, Primas H (1968) Chem Phys Lett 1:545

    Article  CAS  Google Scholar 

  82. Riess J (1970) Ann Phys 57:301

    Article  Google Scholar 

  83. Riess J (1971) Ann Phys 67:346

    Article  Google Scholar 

  84. Riess J (1970) Phys Rev D 2:647

    Article  Google Scholar 

  85. Milnor JW (1997) Topology from the differentiable viewpoint. University of Virginia Press, Charlottesville

    Google Scholar 

  86. Guillemin V, Pollack A (1974) Differential topology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  87. Collard K, Hall GG (1977) Int J Quantum Chem XII:623

    Google Scholar 

  88. Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  89. Keith TA, Bader RFW (1993) J Chem Phys 99:3669

    Article  CAS  Google Scholar 

  90. Bader RFW, Keith TA (1993) J Chem Phys 99:3683

    Article  CAS  Google Scholar 

  91. Coddington EA, Levinson N (1955) Theory of ordinary differential equations. Mc Graw-Hill, New York

    Google Scholar 

  92. Reyn JW, Angew Z (1964) Math Physik 15:540

    Google Scholar 

  93. Gomes JANF (1983) J Chem Phys 78:3133

    Article  CAS  Google Scholar 

  94. Bergé P, Pomeau Y, Vidal C (1998) L’ordre dans le Chaos - vers une approche déterministe de la turbulence, cinquième edition. Hermann, New York

    Google Scholar 

  95. Abraham RH, Shaw CD (1992) Dynamics–the geometry of behavior, 2nd edn. Addison-Wesley, Redwood City

    Google Scholar 

  96. Gilmore R (1993) Catastrophe theory for scientist and engineers. Dover Publications Inc., New York

    Google Scholar 

  97. Sachs RG (1987) The physics of time reversal. The University of Chicago Press, Chicago, p 12, 21, 24

    Google Scholar 

  98. Tavger BA, Zaitsev VM (1956) Sov Phys JETP 3:430

    Google Scholar 

  99. Bradley CJ, Davies BL (1968) Rev Mod Phys 40:359

    Article  Google Scholar 

  100. (1955) J Chem Phys 23:1997

    Google Scholar 

  101. Mulliken RS (1956) J Chem Phys 24:1118

    Article  Google Scholar 

  102. Pelloni S, Lazzeretti P (2011) Int J Quantum Chem 111:356

    Article  CAS  Google Scholar 

  103. Pelloni S, Lazzeretti P (2009) Chem Phys 356:153

    Article  CAS  Google Scholar 

  104. Pelloni S, Faglioni F, Zanasi R, Lazzeretti P (2006) Phys Rev A 74:012506

    Article  CAS  Google Scholar 

  105. Coriani S, Lazzeretti P, Malagoli M, Zanasi R (1994) Theor Chim Acta 89:181

    Article  CAS  Google Scholar 

  106. Keith TA, Bader RFW (1993) Chem Phys Lett 210:223

    Article  CAS  Google Scholar 

  107. Zanasi R (1996) J Chem Phys 105:1460

    Article  CAS  Google Scholar 

  108. Parker TS, Chua LO (1986) Practical numerical algorithms for chaotic systems. Springer, New York

    Google Scholar 

  109. Lazzeretti P, Zanasi R (1982) J Chem Phys 77:3129

    Article  CAS  Google Scholar 

  110. Viglione RG, Zanasi R, Lazzeretti P (2004) Org Lett 6:2265

    Article  CAS  Google Scholar 

  111. Pelloni S, Lazzeretti P (2007) Theor Chem Acc 117:903

    Article  CAS  Google Scholar 

  112. Pelloni S, Lazzeretti P (2007) Theor Chem Acc 118:89

    Article  CAS  Google Scholar 

  113. Pelloni S, Lazzeretti P, Zanasi R (2007) J Phys Chem A 111:8163

    Article  CAS  Google Scholar 

  114. Carion R, Champagne B, Monaco G, Zanasi R, Pelloni S, Lazzeretti P (2010) J Chem Theor Comput 6:2002

    Google Scholar 

  115. Pelloni S, Lazzeretti P (2008) J Phys Chem A 112:5175

    Article  CAS  Google Scholar 

  116. Pelloni S, Lazzeretti P (2008) J Chem Phys 128:194305

    Article  CAS  Google Scholar 

  117. Pelloni S, Carion R, Liégeois V, Lazzeretti P (2011) J Comput Chem 32:1599

    Article  CAS  Google Scholar 

  118. Faglioni F, Ligabue A, Pelloni S, Soncini A, Lazzeretti P (2004) Chem Phys 304:289

    Article  CAS  Google Scholar 

  119. Khriplovich IB (1991) Parity nonconservation in atomic phenomena. Gordon and Breach, Oxford

    Google Scholar 

  120. Pelloni S, Faglioni F, Soncini A, Ligabue A, Lazzeretti P (2003) Chem Phys Lett 375:583

    Article  CAS  Google Scholar 

  121. Pelloni S, Lazzeretti P, Zanasi R (2009) Theor Chem Acc 123:353

    Article  CAS  Google Scholar 

  122. Pelloni S, Lazzeretti P, Monaco G, Zanasi R (2011) Rend Lincei 22:105

    Article  Google Scholar 

  123. Provasi PF, Pagola GI, Ferraro MB, Pelloni S, Lazzeretti P (2014) J Phys Chem A 118:6333

    Article  CAS  Google Scholar 

  124. Pagola GI, Ferraro MB, Provasi PF, Pelloni S, Lazzeretti P (2014) J Chem Phys 141

    Google Scholar 

  125. Feixas F, Matito E, Poater J, Solà M (2015) Chapter “Rules of aromaticity”, this book

    Google Scholar 

  126. IUPAC Gold Book. http://goldbook.iupac.org/D01583.html

  127. Omelchenko IV et al (2011) Phys Chem Chem Phys 13:20536

    Article  CAS  Google Scholar 

  128. Steinmann SN, Mo Y, Corminboeuf C (2011) Phys Chem Chem Phys 13:20584

    Article  CAS  Google Scholar 

  129. Feixas F, Vandenbussche J, Bultinck P, Matito E, Solà M (2011) Phys Chem Chem Phys 13:20690

    Article  CAS  Google Scholar 

  130. Feixas F, Matito E, Poater J, Solà M (2015) Chem Soc Rev 44:6434

    Google Scholar 

  131. Musher JI (1965) J Chem Phys 43:4081

    Article  CAS  Google Scholar 

  132. Musher JI (1967) J Chem Phys 46:1219

    Article  CAS  Google Scholar 

  133. Gaidis JM, West R (1967) J Chem Phys 46:1218

    Article  CAS  Google Scholar 

  134. Garrat PJ (1986) Aromaticity. Wiley, New York

    Google Scholar 

  135. Sondheimer F (1972) Acc Chem Res 5:81

    Article  CAS  Google Scholar 

  136. Haigh CW, Mallion RB (1979) Ring current theories in nuclear magnetic resonance. In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in nuclear magnetic resonance spectroscopy, vol 13. Pergamon Press, Oxford, pp 303–344

    Google Scholar 

  137. von Ragué Schleyer P (2001) Chem Rev 101:1115 (and articles therein)

    Google Scholar 

  138. Gomes JANF, Mallion RB (2001) Chem Rev 101:1349

    Article  CAS  Google Scholar 

  139. Pelloni S, Lazzeretti P, Zanasi R (2009) J Phys Chem A 113:14465

    Article  CAS  Google Scholar 

  140. Musher JI (1966) Theory of the chemical shift. In: Waugh JS (ed) Advances in magnetic resonance, vol 2. Academic Press, New York, pp 177–224

    Google Scholar 

  141. Pelloni S, Monaco G, Lazzeretti P, Zanasi R (2011) Phys Chem Chem Phys 13:20666

    Article  CAS  Google Scholar 

  142. Pelloni S, Monaco G, Zanasi R, Lazzeretti P (2012) AIP Conf Proc 1456:114

    Article  CAS  Google Scholar 

  143. Pelloni S, Lazzeretti P (2013) J Phys Chem A 117:9083

    Article  CAS  Google Scholar 

  144. London F (1937) J Phys Radium 8:397 (7ème Série)

    Google Scholar 

  145. Pelloni S, Monaco G, Della Porta P, Zanasi R, Lazzeretti P (2014) J Phys Chem A 118:3367

    Google Scholar 

  146. Van Vleck JH, Sherman A (1935) Rev Mod Phys 7:167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lazzeretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lazzeretti, P. (2016). Topology of Quantum Mechanical Current Density Vector Fields Induced in a Molecule by Static Magnetic Perturbations. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_7

Download citation

Publish with us

Policies and ethics