Skip to main content

Diversity of the Nature of the Nitrogen-Oxygen Bond in Inorganic and Organic Nitrites in the Light of Topological Analysis of Electron Localisation Function (ELF)

  • Chapter
  • First Online:
  • 1431 Accesses

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 22))

Abstract

The electronic structure of nitrite group (–ONO) has been studied for 21 inorganic and organic nitrites using topological analysis of Electron Localisation Function (ELF) for the DFT(B2PLYP)/aug-cc-pVTZ and DFT(B3LYP)/aug-cc-pVTZ optimised geometrical structures. The N–O bonds exhibit populations smaller than 2e, thus including the N+O, NO+ Lewis-type structures in the description of electron density delocalisation is of great importance. The main focus of the ELF analysis was formally single N–O bond in the nitrite group (–O–NO). The results have yielded four different types of local topology: (a) single local maximum V(N,O) with the disynaptic bonding basin, (b) two local maxima V(N), V(O) with monosynaptic non-bonding basins, (c) single local maximum V(N) with monosynaptic non-bonding basin, (d) absence of the local maxima in the N–O bond. Analysis of relationships between basin population values, calculated for the V(N,O), V(N) and V(O) basins, and the N–O bond length, has shown overall trends that can be qualitatively described by the catastrophe theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Burgaud JL, Ongini E, Del Soldato P (2002) Ann N Y Acad Sci 962:360–371

    Article  CAS  Google Scholar 

  2. Nicolescu AC, Reynolds JN, Barclay LRC, Thatcher GRJ (2004) Chem Res Toxicol 17:185–196

    Article  CAS  Google Scholar 

  3. Artz JD, Thatcher GR (1998) Chem Res Toxicol 11:1393–1397

    Article  CAS  Google Scholar 

  4. Brunton TL (1867) Lancet 2:97

    Article  Google Scholar 

  5. Bradberry SM, Whittington RM, Parry DA, Vale JA (1994) J Toxicol Clin Toxicol 32:179–184

    Article  CAS  Google Scholar 

  6. Song H, Saraswathy V, Muralidharan C-HL, Thangavelu K (2009) J Appl Electrochem 39(1):15–22

    Article  Google Scholar 

  7. Hord NG, Tang Y, Brayn NS (2009) Am J Clin Nutr 90(1):1–10

    Article  CAS  Google Scholar 

  8. Popelier PLA (2005) Structure and Bonding. Intermolecular forces and clusters I 115:1–56

    Article  CAS  Google Scholar 

  9. Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford Univeristy Press, Oxford

    Google Scholar 

  10. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  11. Silvi B, Savin A (1994) Nature 371:683–686

    Article  CAS  Google Scholar 

  12. Chevreau H, Fuster F, Silvi B (2001) L’Actualité Chimique 240:15–22

    Google Scholar 

  13. Silvi B, Fourré I, Alikhani ME (2005) Monatsh Chem 136:855–879

    Article  CAS  Google Scholar 

  14. Silvi B (2002) J Mol Struct 614:3–10

    Article  CAS  Google Scholar 

  15. Savin A, Silvi B, Colonna F (1996) Can J Chem 74:1088–1096

    Article  CAS  Google Scholar 

  16. Kohout M (2004) Int J Quantum Chem 97:651–658

    Article  CAS  Google Scholar 

  17. Kohout M (2007) Faraday Discuss 135:43–54

    Article  CAS  Google Scholar 

  18. Berski S, Mierzwicki K, Bil A, Latajka Z (2008) Chem Phys Lett 460:559–562

    Article  CAS  Google Scholar 

  19. Berski S, Latajka Z (2010) Int J Quantum Chem 110:1890–1900

    CAS  Google Scholar 

  20. Berski S, Latajka Z, Gordon AJ (2010) J Chem Phys 133:034304–034313

    Article  Google Scholar 

  21. Berski S, Latajka Z, Gordon AJ (2010) Chem Phys Lett 493:392–398

    Article  CAS  Google Scholar 

  22. Berski S, Latajka Z, Gordon AJ (2010) J Comput Chem 31:2555–2567

    Article  CAS  Google Scholar 

  23. Berski S, Gordon AJ (2011) J Chem Phys 135:094303–094316

    Article  Google Scholar 

  24. Berski S, Latajka Z, Gordon AJ (2011) Chem Phys Lett 506:15–21

    Article  CAS  Google Scholar 

  25. Berski S, Latajka Z, Gordon AJ (2011) J Comput Chem 32:1528–1540

    Article  CAS  Google Scholar 

  26. Berski S, Latajka Z (2011) Int J Quantum Chem 111:2378–2389

    Article  CAS  Google Scholar 

  27. Berski S, Gordon AJ (2012) Chem Phys Lett 525–526:24–31

    Article  Google Scholar 

  28. Berski S, Gordon AJ, Latajka Z (2013) J Chem Phys 138:134313–134322

    Google Scholar 

  29. Krokidis X, Noury S, Silvi B (1997) J Phys Chem A 101:7277–7282

    Article  CAS  Google Scholar 

  30. Krokidis X, Silvi B, Alikhani ME (1998) Chem Phys Lett 292:35–45

    Google Scholar 

  31. Krokidis X, Silvi B, Dezarnaud-Dandine C, Sevin A (1998) New J Chem 22:1341–1350

    Google Scholar 

  32. Krokidis X, Vuilleumier R, Borgis D, Silvi B (1999) Mol Phys 96:265–273

    Google Scholar 

  33. Thom R (1972) Stabilité Structurelle et Morphogénèse. Intereditions, Paris

    Google Scholar 

  34. Fukui K (1981) Acc Chem Res 14:363–368

    Google Scholar 

  35. Llusar R, Beltrán A, Andrés J, Noury S, Silvi B (1999) J Comput Chem 20:1517–1526

    Article  CAS  Google Scholar 

  36. Shaik S, Maitre P, Sini G, Hiberty PC (1992) J Am Chem Soc 114:7861–7866

    Article  CAS  Google Scholar 

  37. Grimme S (2006) J Chem Phys 124:034108–034122

    Google Scholar 

  38. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  39. Dunning Jr TH (1989) J Chem Phys. 90:1007–1023

    Google Scholar 

  40. Kendall RA, Dunning Jr TH, Harrison RJ (1992) J Chem Phys 96:6797–6806

    Article  Google Scholar 

  41. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  42. Leininger T, Nicklass A, Kuechle W, Stoll H, Dolg M, Bergner A (1996) Chem Phys Lett 255:274–280

    Article  CAS  Google Scholar 

  43. Ahlrichs R, May K (2000) Phys Chem Chem Phys 2:943–945

    Article  CAS  Google Scholar 

  44. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–111123

    Article  CAS  Google Scholar 

  45. Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod; Paris

    Google Scholar 

  46. Noury S, Krokidis X, Fuster F, Silvi B (1999) Comput Chem 23:597–604

    Article  CAS  Google Scholar 

  47. Feixas F, Matito E, Duran M, Solá M, Silvi B (2010) J Chem Theory Comput 6:2736–2742

    Article  CAS  Google Scholar 

  48. Andrienko GA ChemCraft. http://www.chemcraftprog.com

  49. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  51. Silvi B (2004) Phys Chem Chem Phys 6:256–260

    Article  CAS  Google Scholar 

  52. Du L, Zeng X-Q, Ge M-F, Sun Z, Wang D-X (2008) J Mol Struct 878:26–31

    Article  CAS  Google Scholar 

  53. Ang HG, Klapdor MF, Kwik WL, Lee YW, Mack HG, Mootz D, Poll W, Oberhammer H (1993) J Am Chem Soc 115:6929–6933

    Article  CAS  Google Scholar 

  54. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Wroclaw Centre for Networking and Supercomputing for generous allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Berski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berski, S., Gordon, A.J. (2016). Diversity of the Nature of the Nitrogen-Oxygen Bond in Inorganic and Organic Nitrites in the Light of Topological Analysis of Electron Localisation Function (ELF). In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_19

Download citation

Publish with us

Policies and ethics