Skip to main content

Topological Approaches of the Bonding in Conceptual Chemistry

  • Chapter
  • First Online:
Applications of Topological Methods in Molecular Chemistry

Abstract

Though almost a century old, Lewis’s theory of chemical bonding remains at the heart of the understanding of chemical structure. In spite of their basic discrete nature, Lewis’s structures (topological 0-manifolds) continue to lend themselves to sophisticated treatments leading to valuable results in terms of topological analysis of chemical properties. The bonding topology is however not only defined, but also refined by direct consideration of the nuclear geometry, itself determined by the configuration of the embedding electron cloud. During the last century, the theory has thus been complemented by the mesomery concept, by the Linnett’s double quartet scheme and by the VSEPR/LCP models. These models rely on an assumed spatial disposition of the electrons which does not take the quantum mechanical aspects into account. These models are reexamined by investigation of the topological 1-manifolds generated by the gradient field of potential functions featuring the electron cloud configuration, such as the electron density or electron localization function (ELF). In this chapter, we reexamine these models in order to escape from the quantum mechanical dilemma and we show how topological analyzes enable to recover these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept of infinite graph applicable to non-covalent molecular materials being less directly fruitful because of the ambiguity in the definition of the eigenvalue spectrum.

  2. 2.

    In the mathematical sense, metric does not mean measurable. Though the spirits of the definitions are tightly related, a topological space \((X,T)\), even metric, is indeed not a measurable space a priori. The smallest \(\sigma\)-algebra of \(X\) containing the topology \(T\) is the Borel algebra \(A_{B}\) serving to define all the measurable subsets of \(X\) including all the open sets: only \((X,A_{B} )\) is a measurable space. Reminder: a \(\sigma\)-algebra of \(X\) is a part \(A\) of \(P(X)\), the elements of which are called m measurable sets, such that:

    1. i.

      \(X \in A\) (or \(\emptyset \in A\));

    2. ii.

      \(\forall A \in A,X\backslash A \in A\) (\(A\) is closed under complementation);

    3. iii.

      \(\forall \{ A_{1} ,A_{2} ,A_{3} , \ldots \} \subset A,A_{1}\,\cup\,A_{2}\,\cup\,A_{3}\,\cup\cdots \in A\) (\(A\) is closed under countable unions).

  3. 3.

    if multi-center bonds are considered, the molecular graph is replaced by a molecular hyper-graph.

References

  1. Dalton J (1808) New system of chemical philosophy. R. Bickerstaff, London

    Google Scholar 

  2. Brown AC (1864) Trans Roy Soc Edinb 23:707

    Article  Google Scholar 

  3. Brown AC (1865) J Chem Soc 18:230

    Article  Google Scholar 

  4. Babaev EV (1999) Chemical topology: introduction and fundamentals. In: Bonchev D, Rouvray R (eds). Gordon and Breach, Reading, pp 167–264

    Google Scholar 

  5. Sylvester JJ (1878) Nature 17:284

    Article  Google Scholar 

  6. Kekulé von Stardonitz FA (1857) Annalen der Chemie und Pharmacie 106:129

    Article  Google Scholar 

  7. Lewis GN (1916) J Am Chem Soc 38:762

    Article  CAS  Google Scholar 

  8. Berzélius JJ (1819) Essai sur la théorie des proportions chimiques et sur l’influence chimique de l’électricité, par J. J. Berzélius,… Traduit du suédois sous les yeux de l’auteur et publié par lui-même. Méquignon-Marvis, Paris

    Google Scholar 

  9. Laming R (1845) Phil Mag 27:420

    Google Scholar 

  10. Abegg A, Anorg Z (1904) Chem 39:330

    CAS  Google Scholar 

  11. Thomson JJ (1904) Phil Mag 7:237

    Article  CAS  Google Scholar 

  12. Huggins ML (1922) Science 55:679

    Article  CAS  Google Scholar 

  13. Ingold CK (1922) J Chem Soc 121:1133

    Article  CAS  Google Scholar 

  14. Ingold CK (1933) J Chem Soc 143:1120

    Article  Google Scholar 

  15. Linnett JW (1961) J Am Chem Soc 83:2643

    Article  CAS  Google Scholar 

  16. Linnett JW (1964) The electronic structure of molecules. A new approach. Methuen, London

    Google Scholar 

  17. Maraval V, Chauvin R (2007) New J Chem 31:1853

    Article  CAS  Google Scholar 

  18. Chauvin R (1996) J Math Chem 19:147

    Article  CAS  Google Scholar 

  19. Sidgwick NV, Powell HM (1940) Proc Roy Soc A 176:153

    Article  CAS  Google Scholar 

  20. Gillespie RJ, Nyholm RS (1957) Quart Rev Chem Soc 11:339

    Article  CAS  Google Scholar 

  21. Gillespie RJ (1963) J Chem Educ 40:295

    Article  CAS  Google Scholar 

  22. Gillespie RJ (1991) Chem Soc Rev 21:59

    Article  Google Scholar 

  23. Gillespie RJ, Robinson EA (1996) Angew Chem Int Ed Engl 35:495

    Article  CAS  Google Scholar 

  24. Lepetit C, Maraval V, Canac Y, Chauvin R (2016) Coord Chem Rev.308:59

    Google Scholar 

  25. Ayers PL, Boyd RJ, Bultinck P, Caffarel M, Carbó-Dorca R, Causá M, Cioslowski J, Contreras-Garcia J, Cooper DL, Coppens P, Gatti C, Grabowsky S, Lazzeretti P, Macchi P, Martín Pendás A, Popelier PL, Ruedenberg K, Rzepa H, Savin A, Sax A, Schwarz WE, Shahbazian S, Silvi B, Solà M, Tsirelson V (2015) Comput Theor Chem 1053(2). Special Issue: Understanding structure and reactivity from topology and beyond

    Google Scholar 

  26. Diudea MV, Gutman I, Lorentz J (1999) Molecular topology. Nova Science, Huntington, New York

    Google Scholar 

  27. Restrepo G, Villaveces JL (2012) Int J Phil Chem 18:3

    CAS  Google Scholar 

  28. Wiener H (1947) J Am Chem Soc 69:17

    Article  CAS  Google Scholar 

  29. Gutman I (1978) Ber Math Stat Sekt Forschungszentrum Graz 103:1

    Google Scholar 

  30. Gutman I, Milun M, Trinajstic N (1976) Croat Chem Acta 48:87

    CAS  Google Scholar 

  31. Aihara J (1976) J Am Chem Soc 98:2750

    Article  CAS  Google Scholar 

  32. Sachs H (1962) Publ Math (Debrecen) 9:270

    Google Scholar 

  33. Heilmann O, Lieb E (1972) Commun Math Phys 25:190

    Article  Google Scholar 

  34. Chauvin R, Lepetit C, Fowler PW, Malrieu JP (2010) Phys Chem Chem Phys 12:5295

    Article  CAS  Google Scholar 

  35. Chauvin R, Lepetit C (2013) Phys Chem Chem Phys 15:3855

    Article  CAS  Google Scholar 

  36. Estrada E (2000) Chem Phys Lett 319:713

    Article  CAS  Google Scholar 

  37. Dirac PAM (1929) Proc Roy Soc A 123:714

    Article  CAS  Google Scholar 

  38. Thom R (1993) Prédire n’est pas expliquer. Flammarion, Paris

    Google Scholar 

  39. Popelier PLA (2007) Faraday Discuss 135:3

    Article  Google Scholar 

  40. Hellmann H (1937) Einführung in die Quantenchemie. Franz Deuticke, Leipzig and Vienna

    Google Scholar 

  41. Feynman RP (1939) Phys Rev 56:340

    Article  CAS  Google Scholar 

  42. Hurley AC (1954) Proc Roy Soc A

    Google Scholar 

  43. Hurley AC (1954) Proc Roy Soc A 226(1165):179

    Article  CAS  Google Scholar 

  44. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  45. McWeeny R (1989) Methods of molecular quantum mechanics, 2nd edn. Academic Press, London

    Google Scholar 

  46. Wigner E (1932) Phys Rev 40(5):749

    Article  CAS  Google Scholar 

  47. Shewell JR (1959) Am J Phys 27:16

    Article  Google Scholar 

  48. Cohen L (1966) J Math Phys 7:781

    Article  Google Scholar 

  49. Cohen L (1979) J. Chem. Phys. 70:788

    Article  CAS  Google Scholar 

  50. Silvi B (2003) J Phys Chem A 107:3081

    Article  CAS  Google Scholar 

  51. Kohout M, Pernal K, Wagner FR, Grin Y (2004) Theor Chem Acc 112:453

    Article  CAS  Google Scholar 

  52. Kohout M, Pernal K, Wagner FR, Grin Y (2005) Theor Chem Acc 113:287

    Article  CAS  Google Scholar 

  53. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  54. Silvi B, Fourré I, Alikhani E (2005) Monatsh Chem 136:855

    Article  CAS  Google Scholar 

  55. Ayers PW (2005) J Chem Sci 117:441

    Article  CAS  Google Scholar 

  56. Gadre SR, Shirsat RN (2000) Electrostatics of atoms and molecules. Universities Press, Hyderabad

    Google Scholar 

  57. Balanarayan P, Gadre SR (2003) J Chem Phys 119:5037

    Article  CAS  Google Scholar 

  58. Espinosa E, Lecomte C, Molins E (1999) Chem Phys Lett 300:745

    Article  CAS  Google Scholar 

  59. Cao WL, Gatti C, MacDougall PJ, Bader RFW (1987) Chem Phys Lett 141:380

    Article  CAS  Google Scholar 

  60. Gatti C, Fantucci P, Pacchioni G (1987) Theor Chim Acta (Berlin) 72:433

    Article  CAS  Google Scholar 

  61. Cioslowski J (1990) J Phys Chem 94:5496

    Article  CAS  Google Scholar 

  62. Mei C, Edgecombe KE, Smith VH Jr, Heilingbrunner A (1993) Int J Quant Chem 48:287

    Article  CAS  Google Scholar 

  63. Silvi B, Gatti C (2000) J Phys Chem A 104:947

    Article  CAS  Google Scholar 

  64. Martín Pendás A, Blanco MA, Costales A, Mori Sánchez P, Luaña V (1999) Phys Rev Lett 83:1930

    Google Scholar 

  65. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford Univ Press, Oxford

    Google Scholar 

  66. Bader RFW (1994) Phys Rev B 49:13348

    Article  CAS  Google Scholar 

  67. Bader RFW (2001) Theor Chem Acc 105:276

    Article  CAS  Google Scholar 

  68. Bader RFW (2005) Monatsh Chem 136:819

    Article  CAS  Google Scholar 

  69. Bader RFW (2007) J Phys Chem A 111:7966

    Article  CAS  Google Scholar 

  70. Bader RFW (2007) The quantum theory of atoms. In: Matta CF, Boyd RJ (eds) Molecules: from solid state to dna and drug design. Wiley, New York, pp 37–59

    Google Scholar 

  71. Srebrenik S, Bader RFW (1975) J Chem Phys 63(9):3945

    Article  CAS  Google Scholar 

  72. Gillespie RJ, Robinson EA (2007) J Comput Chem 28:87

    Article  CAS  Google Scholar 

  73. Gillespie RJ, Noury S, Pilmé J, Silvi B (2004) Inorg Chem 43:3248

    Article  CAS  Google Scholar 

  74. de Courcy B, Pedersen LG, Parisel O, Gresh N, Silvi B, Pilmé J, Piquemal JP (2010) J Chem Theory Comput 6:1048

    Article  Google Scholar 

  75. Bader RFW, Anderson SG, Duke AJ (1979) J Am Chem Soc 101:1389

    Article  CAS  Google Scholar 

  76. Bader RFW, Nguyen-Dang TT, Tal Y (1981) Rep Prog Phys 44:893

    Article  Google Scholar 

  77. Krokidis X, Noury S, Silvi B (1997) J Phys Chem A 101:7277

    Article  CAS  Google Scholar 

  78. Tal Y, Bader RFW, Erkku J (1980) Phys Rev A 21:1

    Article  CAS  Google Scholar 

  79. Thom R (1972) Stabilité Structurelle et morphogénèse. Intereditions, Paris

    Google Scholar 

  80. Berski S, Andrés J, Silvi B, Domingo L (2003) J Phys Chem A 107:6014

    Article  CAS  Google Scholar 

  81. Polo V, Andres J, Castillo R, Berski S, Silvi B (2004) Chem Eur J 10:5165

    Article  CAS  Google Scholar 

  82. Santos JC, Andrés J, Aizman A, Fuentealba P, Polo V (2005) J Phys Chem A 109(16):3687

    Article  CAS  Google Scholar 

  83. Berski S, Andrés J, Silvi B, Domingo LR (2006) J Phys Chem A 110:13939

    Article  CAS  Google Scholar 

  84. Andrés J, Berski S, Domingo LR, Polo V, Silvi B (2011) Curr Org Chem 15:3566

    Article  Google Scholar 

  85. Andrés J, Berski S, Domingo LR, González-Navarrete P (2012) J Comput Chem 33:748

    Article  Google Scholar 

  86. González-Navarrete P, Domingo LR, Andrés J, Berski S, Silvi B (2012) J Comput Chem 33:2400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernard Silvi or Remi Chauvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silvi, B., Esmail Alikhani, M., Lepetit, C., Chauvin, R. (2016). Topological Approaches of the Bonding in Conceptual Chemistry. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_1

Download citation

Publish with us

Policies and ethics