Skip to main content

A New Virus-Antivirus Spreading Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9377))

Abstract

Indeed, countermeasures, as well as computer viruses, could spread in the network. This paper aims to investigate the effect of propagation of countermeasures on viral spread. For the purpose, a new virus-antivirus spreading model is proposed. The global asymptotic stability of the virus-free equilibrium is proved when the threshold is below the unity, and the existence of the viral equilibrium is shown when the threshold exceeds the unity. The influences of different model parameters on the threshold are also analyzed. Numerical simulations imply that the propagation of countermeasures contributes to the suppress of viruses, which is consistent with the fact.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kephart, J.O., White, S.R.: Directed-graph epidemiological models of computer viruses. In: 1991 IEEE Computer Society Symposium on Security Privacy, pp. 343–359. IEEE Computer Society, Oakland (1991)

    Chapter  Google Scholar 

  2. Billings, L., Spears, W.M., Schwartz, I.B.: A unified prediction of computer virus spread in connected networks. Physics Letters A 297, 261–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ren, J., Yang, X., Zhu, Q., et al.: A novel computer virus model and its dynamics. Nonlinear Analysis: Real World Applications 13, 376–384 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Zhu, Q., Yang, X., Ren, J.: Modeling and analysis of the spread of computer virus. Communications in Nonlinear Science and Numerical Simulation 17, 5117–5124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gan, C., Yang, X., Liu, W., et al.: Propagation of computer virus under human intervention: a dynamical model. Discrete Dynamics in Nature and Society (2012)

    Google Scholar 

  6. Gan, C., Yang, X., Liu, W., et al.: A propagation model of computer virus with nonlinear vaccination probability. Communications in Nonlinear Science and Numerical Simulation 19(1), 92–100 (2014)

    Article  MathSciNet  Google Scholar 

  7. Yang, X., Yang, L.-X.: Towards the epidemiological modeling of computer viruses. Discrete Dynamics in Nature and Society (2012)

    Google Scholar 

  8. Yang, L.-X., Yang, X.: Propagation behavior of virus codes in the situation that infected computers are connected to the Internet with positive probability. Discrete Dynamics in Nature and Society (2012)

    Google Scholar 

  9. Zhu, Q., Yang, X., Yang, L.-X., et al.: A mixing propagation model of computer viruses and countermeasures. Nonlinear Dynamics 73(3), 1433–1441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, L.-X., Yang, X.: The effect of infected external computers on the spread of viruses: a compartment modeling study. Physica A: Statistical Mechanics and its Applications 392(24), 6523–6535 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mishra, B.K., Jha, N.: Fixed period of temporary immunity after run of anti-malicious software on computer nodes. Applied Mathematics and Computation 190(2), 1207–1212 (2007)

    Article  MATH  Google Scholar 

  12. Mishra, B.K., Saini, D.K.: SEIRS epidemic model with delay for transmission of malicious objects in computer network. Applied Mathematics and Computation 188(2), 1476–1482 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, X., Tan, Q.: Dynamical behavior of computer virus on Internet. Applied Mathematics and Computation 217(6), 2520–2526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, C., Zhao, Y., Wu, Y.: An impulse model for computer viruses. Discrete Dyn. Nat. Soc. (2012)

    Google Scholar 

  15. Zhang, C., Zhao, Y., Wu, Y., Deng, S.: A stochastic dynamic model of computer viruses. Discrete Dyn. Nat. Soc. (2012)

    Google Scholar 

  16. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Physics Review Letters 86(14), 3200–3203 (2001)

    Article  Google Scholar 

  17. Chen, L.C., Carley, K.M.: The impact of countermeasure propagation on the prevalence of computer viruses. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(2), 823–833 (2004)

    Article  Google Scholar 

  18. Thieme, H.R.: Asymptotically autonomous differential equations in the plane. Rocky Mt. J. Math. (1994)

    Google Scholar 

  19. Robinson, R.C.: An Introduction to Dynamical System: Continuous and Discrete. American Mathematical Soc. (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, B., Li, C. (2015). A New Virus-Antivirus Spreading Model. In: Hu, X., Xia, Y., Zhang, Y., Zhao, D. (eds) Advances in Neural Networks – ISNN 2015. ISNN 2015. Lecture Notes in Computer Science(), vol 9377. Springer, Cham. https://doi.org/10.1007/978-3-319-25393-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25393-0_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25392-3

  • Online ISBN: 978-3-319-25393-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics