Skip to main content

Distribution Interpolation of the Radon Transforms for Shape Transformation of Gray-Scale Images and Volumes

  • Conference paper
  • First Online:
  • 620 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 550))

Abstract

In this paper, we extend 1D distribution interpolation to 2D and 3D by using the Radon transform. Our algorithm is fundamentally different from previous shape transformation techniques, since it considers the objects to be interpolated as density distributions rather than level sets of density functions. First, we perform distribution interpolation on the precalculated Radon transforms of two different density functions, and then an intermediate density function is obtained by a consistent inverse Radon transform. This approach guarantees a smooth transition along all the directions the Radon transform is calculated for. Unlike the previous methods, our technique is able to interpolate between features that do not even overlap and it does not require a one dimension higher object representation. We will demonstrate that these advantageous properties can be well exploited for 3D modeling and metamorphosis.

This is a preview of subscription content, log in via an institution.

References

  1. Butt, M.A., Maragos, P.: Optimum design of chamfer distance transforms. IEEE Trans. Image Process. 7(10), 1477–1484 (1998)

    Article  Google Scholar 

  2. Bajaj, C.L., Coyle, E.J., Lin, K.N.: Arbitrary topology shape reconstruction from planar cross sections. In: Proceedings of Graphical Models and Image Processing, pp. 524–543 (1996)

    Article  Google Scholar 

  3. Beier, T., Neely, S.: Feature-based image metamorphosis. Comput. Graph. (Proc. SIGGRAPH) 26(2), 35–42 (1992)

    Article  Google Scholar 

  4. Bonneel, N., van de Panne, M., Paris, S., Heidrich, W.: Displacement interpolation using Lagrangian mass transport. In: Proceedings of SIGGRAPH Asia, pp. 158:1–158:12 (2011)

    Google Scholar 

  5. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Process. 34(3), 344–371 (1986)

    Article  Google Scholar 

  6. Buhmann, M.: Radial Basis Functions: Theory and Implementations. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  7. Cheng, S.W., Dey, T.K.: Improved constructions of delaunay based contour surfaces. In: Proceedings of ACM Symposium on Solid Modeling and Applications, pp. 322–323 (1999)

    Google Scholar 

  8. Cohen-Or, D., Solomovic, A., Levin, D.: Three-dimensional distance field metamorphosis. ACM Trans. Graph. 17(2), 116–141 (1998)

    Article  Google Scholar 

  9. Csébfalvi, B., Neumann, L., Kanitsar, A., Gröller, E.: Smooth shape-based interpolation using the conjugate gradient method. In: Proceedings of Vision, Modeling, and Visualization, pp. 123–130 (2002)

    Google Scholar 

  10. Deans, S.R.: The Radon Transform and Some of Its Applications. Krieger Publishing, Malabar (1983)

    MATH  Google Scholar 

  11. Fang, S., Srinivasan, R., Raghavan, R., Richtsmeier, J.T.: Volume morphing and rendering - an integrated approach. Comput. Aided Geom. Des. 17(1), 59–81 (2000)

    Article  MathSciNet  Google Scholar 

  12. Grevera, G.J., Udupa, J.K.: Shape-based interpolation of multidimensional grey-level images. IEEE Trans. Med. Imaging 15(6), 881–892 (1996)

    Article  Google Scholar 

  13. Herman, G.T., Zheng, J., Bucholtz, C.A.: Shape-based interpolation. IEEE Comput. Graph. Appl. 12(3), 69–79 (1992)

    Article  Google Scholar 

  14. Jones, M.W., Baerentzen, J.A., Sramek, M.: 3D distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12(4), 581–599 (2006)

    Article  Google Scholar 

  15. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)

    MATH  Google Scholar 

  16. Kniss, J., Premoze, S., Hansen, C., Ebert, D.: Interactive translucent volume rendering and procedural modeling. In: Proceedings of IEEE Visualization (VIS), pp. 109–116 (2002)

    Google Scholar 

  17. Lerios, A., Garfinkle, C.D., Levoy, M.: Feature-based volume metamorphosis. In: Proceedings of SIGGRAPH, pp. 449–456 (1995)

    Google Scholar 

  18. Liu, L., Bajaj, C., Deasy, J., Low, D.A., Ju, T.: Surface reconstruction from non-parallel curve networks. Comput. Graph. Forum 27(2), 155–163 (2008)

    Article  Google Scholar 

  19. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  20. Neumann, L., Csébfalvi, B., Viola, I., Mlejnek, M., Gröller, E.: Feature-preserving volume filtering. In: VisSym 2002: Joint Eurographics - IEEE TCVG Symposium on Visualization, pp. 105–114 (2002)

    Google Scholar 

  21. Raya, S., Udupa, J.: Shape-based interpolation of multidimensional objects. IEEE Trans. Med. Imaging 9(1), 32–42 (1990)

    Article  Google Scholar 

  22. Read, A.L.: Linear interpolation of histograms. Nucl. Instr. Meth. A425, 357–360 (1999)

    Article  Google Scholar 

  23. Schneider, J., Kraus, M., Westermann, R.: GPU-based real-time discrete Euclidean distance transforms with precise error bounds. In: Proceedings of International Conference on Computer Vision Theory and Applications (VISAPP), pp. 435–442 (2009)

    Google Scholar 

  24. Treece, G.M., Prager, R.W., Gee, A.H., Berman, L.H.: Surface interpolation from sparse cross-sections using region correspondence. IEEE Trans. Med. Imaging 19(11), 1106–1114 (2000)

    Article  Google Scholar 

  25. Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: Proceedings of SIGGRAPH, pp. 335–342 (1999)

    Google Scholar 

  26. Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Trans. Graph. 21(4), 855–873 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by OTKA K-101527. The Heloderma data set is from the Digital Morphology http://www.digimorph.org data archive. Special thanks to Dr. Jessica A. Maisano for making this data set available to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Csébfalvi .

Editor information

Editors and Affiliations

Appendix

Appendix

Theorem 1

Let us denote the Radon transforms of the 2D projections \(p^0_\theta (t,z)\) and \(p^1_\theta (t,z)\) of the density functions \(f_0(x,y,z)\) and \(f_1(x,y,z)\) by \(p^0_{\theta , \varphi }(r)\) and \(p^1_{\theta , \varphi }(r)\), respectively:

$$\begin{aligned} p^0_{\theta , \varphi }(r) = \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } p^0_\theta (t,z) \delta (t \cos (\varphi ) + z \sin (\varphi ) - r) dt dz, \end{aligned}$$
(11)
$$\begin{aligned} p^1_{\theta , \varphi }(r) = \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } p^1_\theta (t,z) \delta (t \cos (\varphi ) + z \sin (\varphi ) - r) dt dz. \end{aligned}$$

Additionally, let us introduce operator \(D_w\), which generates an interpolated 1D projection \(p_{\theta , \varphi }(r) \) from the 1D projections \(p^0_{\theta , \varphi }(r) \) and \(p^1_{\theta , \varphi }(r) \) using distribution interpolation:

$$\begin{aligned} p_{\theta , \varphi }(r) = D_w[p^0_{\theta , \varphi }(r), p^1_{\theta , \varphi }(r)]. \end{aligned}$$
(12)

The 2D inverse Radon transform \(p_\theta (t,z)\) of \(p_{\theta , \varphi }(r)\) yields consistent and valid projections of an intermediate density function f(xyz) in a sense that

$$\begin{aligned} \int _{-\infty }^{\infty } p_{\theta _0}(t,z) dt = \int _{-\infty }^{\infty } p_{\theta _1}(t,z) dt, \end{aligned}$$
(13)

for arbitrary pairs of \(\theta _0\) and \(\theta _1\) and for each value of z.

Proof

Note that \(p_{\theta , \varphi }(r)\) is a consistent and valid 2D Radon transform of a projection \(p_\theta (t,z)\) because

$$\begin{aligned} \int _{-\infty }^{\infty } p_{\theta , \varphi _0}(r) dr = \int _{-\infty }^{\infty } p_{\theta , \varphi _1}(r) dr = \end{aligned}$$
(14)
$$\begin{aligned} (1-w) \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } f_0(x,y,z) dx dy dz + w \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } f_1(x,y,z) dx dy dz, \end{aligned}$$

for arbitrary pairs of \(\varphi _0\) and \(\varphi _1\). Therefore, Eq. 13 can be expressed from \(p_{\theta , \varphi }(r)\), where \(\varphi = \pi / 2\) and \(r = z\) correspond exactly to projections onto the z axis:

$$\begin{aligned} \int _{-\infty }^{\infty } p_{\theta _0}(t,z) dt = p_{\theta _0, {\pi \over 2}}(z) = D_w[p^0_{\theta _0, {\pi \over 2}}(z), p^1_{\theta _0, {\pi \over 2}}(z)], \end{aligned}$$
(15)
$$\begin{aligned} \int _{-\infty }^{\infty } p_{\theta _1}(t,z) dt = p_{\theta _1, {\pi \over 2}}(z) = D_w[p^0_{\theta _1, {\pi \over 2}}(z), p^1_{\theta _1, {\pi \over 2}}(z)]. \end{aligned}$$

Note that

$$\begin{aligned} p^0_{\theta _0, {\pi \over 2}}(z) = p^0_{\theta _1, {\pi \over 2}}(z) = \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } f_0(x,y,z) dx dy, \end{aligned}$$
(16)

and

$$\begin{aligned} p^1_{\theta _0, {\pi \over 2}}(z) = p^1_{\theta _1, {\pi \over 2}}(z) = \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } f_1(x,y,z) dx dy. \end{aligned}$$
(17)

Thus, \(p_{\theta _0, {\pi \over 2}}(z)\) is equal to \(p_{\theta _1, {\pi \over 2}}(z)\) because they are obtained by applying operator \(D_w\) on the same 1D projections. Consequently, Eq. 13 is satisfied for arbitrary pairs of \(\theta _0\) and \(\theta _1\) and for each value of z.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tóth, M.J., Csébfalvi, B. (2015). Distribution Interpolation of the Radon Transforms for Shape Transformation of Gray-Scale Images and Volumes. In: Battiato, S., Coquillart, S., Pettré, J., Laramee, R., Kerren, A., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics - Theory and Applications. VISIGRAPP 2014. Communications in Computer and Information Science, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-319-25117-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25117-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25116-5

  • Online ISBN: 978-3-319-25117-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics