Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 426))

  • 931 Accesses

Abstract

Calibrating the raw visibility data from radio interferometers in order to remove the effects of the instrument and the atmosphere is needed to achieve the desired scientific outcome. Here, the processes required to calibrate data from LOFAR, after applying the pre-processing steps, are discussed. In particular, the calibration philosophy and usage of the LOFAR calibration software is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dynamic range is the ratio between the peak brightness and an estimate of the noise in an image. High-quality images have high dynamic range.

  2. 2.

    For the HBA, each tile beam is formed from 16 dipoles within each tile. Here, an analogue beamformer is used at the tile level to combine these dipoles to form a tile beam that is controlled at station level.

References

  • Baars, J.W.M., Genzel, R., Pauliny-Toth, I.I.K., Witzel, A.: Astron. Astrophys. 61, 99 (1977)

    ADS  Google Scholar 

  • Cotton, W.D., Condon, J.J., Perley, R.A., et al.: In: Oschmann, J.M. Jr. (ed.) Ground-Based Telescopes. Proceedings of SPIE, vol. 5489, pp. 180–189. SPIE, Bellingham (2004)

    Google Scholar 

  • Fessler, J.A., Hero, A.O.: IEEE Trans. Signal Process. 42, 2664 (1994)

    Article  ADS  Google Scholar 

  • Garsden, H., Girard, J.N., Starck, J.L., et al.: Astron. Astrophys. 575, A90 (2015)

    Article  Google Scholar 

  • Gower, J.F.R., Scott, P.F., Wills, D.: MmRAS 71, 49 (1967)

    ADS  Google Scholar 

  • Hamaker, J.P., Bregman, J.D., Sault, R.J.: Astron. Astrophys. Suppl. Ser. 117, 137 (1996)

    Article  ADS  Google Scholar 

  • Hardcastle, M.J., Gürkan, G., van Weeren, R.J., et al.: Mon. Not. R. Astron. Soc. 462, 1910 (2016)

    Article  ADS  Google Scholar 

  • Heald, G.H., Pizzo, R.F., Orrú, E., et al.: Astron. Astrophys. 582, A123 (2015)

    Article  Google Scholar 

  • Högbom, J.A.: Astron. Astrophys. Suppl. Ser., 15, 417 (1974)

    ADS  Google Scholar 

  • Hurley-Walker, N., Callingham, J.R., Hancock, P.J., et al.: Mon. Not. R. Astron. Soc. 464, 1146 (2017)

    Article  ADS  Google Scholar 

  • Intema, H.T., van der Tol, S., Cotton, W.D., et al.: Astron. Astrophys. 501, 1185 (2009)

    Article  ADS  Google Scholar 

  • Intema, H.T., Jagannathan, P., Mooley, K.P., Frail, D.A.: Astron. Astrophys. 598, A78 (2017)

    Article  ADS  Google Scholar 

  • Jelić, V., de Bruyn, A.G., Pandey, V.N., et al.: Astron. Astrophys. 583, A137 (2015)

    Article  Google Scholar 

  • Jones, R.C.: J. Opt. Soc. Am. (1917–1983) 31, 488 (1941)

    Article  ADS  Google Scholar 

  • Junklewitz, H., Bell, M.R., Selig, M., Enßlin, T.A.: Astron. Astrophys. 586, A76 (2016)

    Article  ADS  Google Scholar 

  • Kazemi, S., Yatawatta, S., Zaroubi, S., et al.: Mon. Not. R. Astron. Soc. 414, 1656 (2011)

    Article  ADS  Google Scholar 

  • Kazemi, S., Yatawatta, S., Zaroubi, S.: Mon. Not. R. Astron. Soc. 430, 1457 (2013)

    Article  ADS  Google Scholar 

  • Laing, R.A., Riley, J.M., Longair, M.S.: Mon. Not. R. Astron. Soc. 204, 151 (1983)

    Article  ADS  Google Scholar 

  • Lane, W.M., Cotton, W.D., van Velzen, S., et al.: Mon. Not. R. Astron. Soc. 440, 327 (2014)

    Article  ADS  Google Scholar 

  • Macquart, J.-P., de Bruyn, A.G.: Mon. Not. R. Astron. Soc. 380, L20 (2007)

    Article  ADS  Google Scholar 

  • Noordam, J.E.: In: Oschmann, J.M. Jr. (ed.) Ground-Based Telescopes. Proceedings of SPIE, vol. 5489, pp. 817–825. SPIE, Bellingham (2004)

    Google Scholar 

  • Noordam, J.E., Smirnov, O.M.: Astron. Astrophys. 524, A61 (2010)

    Article  ADS  Google Scholar 

  • Offringa, A.R., de Bruyn, A.G., Zaroubi, S.: Mon. Not. R. Astron. Soc. 422, 563 (2012)

    Article  ADS  Google Scholar 

  • Offringa, A.R., McKinley, B., Hurley-Walker, N., et al.: Mon. Not. R. Astron. Soc. 444, 606 (2014)

    Article  ADS  Google Scholar 

  • Pandey, V.N., van Zwieten, J.E., de Bruyn, A.G., Nijboer, R.: In: Saikia, D.J., Green, D.A., Gupta, Y., Venturi, T. (eds) The Low-Frequency Radio Universe. Astronomical Society of the Pacific Conference Series, vol. 407, p. 384. Astronomical Society of the Pacific, San Francisco (2009)

    Google Scholar 

  • Perley, R.A., Butler, B.J.: Astrophys. J. Suppl. Ser. 230, 7 (2017)

    Article  ADS  Google Scholar 

  • Pilkington, J.D.H., Scott, J.F.: MmRAS 69, 183 (1965)

    ADS  Google Scholar 

  • Rau, U., Cornwell, T.J.: Astron. Astrophys. 532, A71 (2011)

    Article  ADS  Google Scholar 

  • Rengelink, R.B., Tang, Y., de Bruyn, A.G., et al.: Astron. Astrophys. Suppl. Ser. 124, 259 (1997)

    Article  ADS  Google Scholar 

  • Roger, R.S., Bridle, A.H., Costain, C.H.: Astron. J. 78, 1030 (1973)

    Article  ADS  Google Scholar 

  • Scaife, A.M.M., Heald, G.H.: Mon. Not. R. Astron. Soc. 423, L30 (2012)

    Article  ADS  Google Scholar 

  • Smirnov, O.M.: Astron. Astrophys. 527, A106 (2011)

    Article  ADS  Google Scholar 

  • Smirnov, O.M., Tasse, C.: Mon. Not. R. Astron. Soc. 449, 2668 (2015)

    Article  ADS  Google Scholar 

  • Tasse, C.: Astron. Astrophys. 566, A127 (2014)

    Article  ADS  Google Scholar 

  • Tasse, C., van der Tol, S., van Zwieten, J., van Diepen, G., Bhatnagar, S.: Astron. Astrophys. 553, A105 (2013)

    Article  Google Scholar 

  • Tasse, C., Hugo, B., Mirmont, M., et al.: Astron. Astrophys. 611, A87 (2018)

    Article  Google Scholar 

  • van der Tol, S., Jeffs, B.D., van der Veen, A.-J.: IEEE Trans. Signal Process. 55, 4497 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • van Weeren, R.J., Brunetti, G., Brüggen, M., et al.: Astrophys. J. 818, 204 (2016a)

    Article  ADS  Google Scholar 

  • van Weeren, R.J., Williams, W.L., Hardcastle, M.J., et al.: Astrophys. J. Suppl. Ser. 223, 2 (2016b)

    Article  ADS  Google Scholar 

  • Vedantham, H.K., Koopmans, L.V.E.: Mon. Not. R. Astron. Soc. 453, 925 (2015)

    Article  ADS  Google Scholar 

  • Yatawatta, S., de Bruyn, A.G., Brentjens, M.A., et al.: Astron. Astrophys. 550, A136 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Roberto Pizzo and George Heald for useful discussions, and the large number of developers and commissioners who have contributed to developing the calibration strategies that are summarised here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John McKean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McKean, J., de Bruyn, G. (2018). Calibration of LOFAR. In: Heald, G., McKean, J., Pizzo, R. (eds) Low Frequency Radio Astronomy and the LOFAR Observatory. Astrophysics and Space Science Library, vol 426. Springer, Cham. https://doi.org/10.1007/978-3-319-23434-2_5

Download citation

Publish with us

Policies and ethics