Skip to main content

The Coronary Vascular System and Associated Medical Devices

  • Chapter
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

Even as recent as several hundred years ago, the general function of the coronary vascular system was largely unknown. Today, it is well established that the coronary system is a highly variable network of both arteries supplying and veins draining the myocardium of oxygenated and deoxygenated blood, respectively. Due to recent advances in therapeutic technologies, the coronary vascular system has been utilized as a conduit in a variety of biomedical applications, e.g., cardiac resynchronization therapy. Additionally, symptomatic diseases such as coronary artery disease can be alleviated with stenting or coronary artery bypass grafts. It is well accepted that a comprehensive understanding of the geometric anatomical characteristics of the coronary system will allow for future medical devices to be engineered to more successfully deliver novel therapies to a greater variety of cardiac patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris CR (1973) The heart and the vascular system. In: Ancient Greek medicine; from Alcmeon to Galen. Clarendon Press, Oxford

    Google Scholar 

  2. Phillips R The heart and circulatory system. http://www.accessexcellenceorg/AE/AEC/CC/heart_backgroundphp. Accessed 05 May 2008

  3. Kajiya F, Kimura A, Hiramatsu O, Ogasawara Y, Tsujioka K (1993) Coronary venous flow. In: Hirakawa, Rothe, Shoukas, Tyberg (eds) Veins, their functional role in the circulation. Springer-Verlag, Tokyo

    Google Scholar 

  4. Alexander R, Schlant R, Fuster V, O’Rourke R, Roberts R, Sonnenblick E (1999) Hurst’s the heart. McGraw-Hill, New York

    Google Scholar 

  5. von Ludinghausen M (2003) The clinical anatomy of coronary arteries. Adv Anat Embryol Cell Biol 167:1–111

    Google Scholar 

  6. Williams P, Bannister L, Berry M (1995) Gray’s anatomy. Churchill Livingston, London

    Google Scholar 

  7. Loukas M, Sharma A, Blaak C, Sorenson E, Mian A (2013) The clinical anatomy of the coronary arteries. J Cardiovasc Transl Res 6:197–207

    PubMed  Google Scholar 

  8. Patel S (2008) Normal and anomalous anatomy of the coronary arteries. Semin Roentgenol 43:100–112

    PubMed  Google Scholar 

  9. Angelini P (1989) Normal and anomalous coronary arteries, definitions and classification. Am Heart J 117:418–434

    CAS  PubMed  Google Scholar 

  10. James T (1961) Anatomy of the coronary arteries. Paul B Hoeber, New York

    Google Scholar 

  11. Yamanaka O, Hobbs R (1990) Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn 21:28–40

    CAS  PubMed  Google Scholar 

  12. Vlodaver Z, Neufeld H, Edwards J (1975) Coronary arterial variations in the normal heart and in congenital heart disease. Academic, New York

    Google Scholar 

  13. Koizumi M, Kawai K et al (2002) Anatomical study of the left single coronary artery with special reference to the various distribution patterns of bilateral coronary arteries. Ann Anat 182:549–557

    Google Scholar 

  14. Frescura C, Basso C, Thiene G et al (1998) Anomalous origin of coronary arteries and risk of sudden death, a study based on an autopsy population of congenital heart disease. Hum Pathol 29:689–695

    CAS  PubMed  Google Scholar 

  15. Zimmermann E, Schnapauff D, Dewey M (2008) Cardiac and coronary anatomy in computed tomography. Semin Ultrasound CT MR 29:176–181

    PubMed  Google Scholar 

  16. Pelliccia A (2001) Congenital coronary artery anomalies in young patients, new perspectives for timely identification. J Am Coll Cardiol 37:598–600

    CAS  PubMed  Google Scholar 

  17. Manghat N, Morgan-Hughes G, Marshall A et al (2005) Multidetector row computed tomography, imaging congenital coronary artery anomalies in adults. Heart 91:1515–1522

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Earls J (2006) Coronary artery anomalies. Tech Vasc Interv Radiol 9:210–217

    PubMed  Google Scholar 

  19. Frommelt P, Frommelt M (2004) Congenital coronary artery anomalies. Pediatr Clin North Am 51:1273–1288

    PubMed  Google Scholar 

  20. Koneru J, Sammual A, Joshi M, Hamden A, Shamoon F, Bikkina M (2011) Coronary anomaly and coronary artery fistula as cause of angina pectoris with literature review. Case Rep Vasc Med 2011:486187

    PubMed Central  PubMed  Google Scholar 

  21. Lowe J, Oldham H Jr, Sabiston D Jr (1981) Surgical management of congenital coronary artery fistulas. Ann Surg 194:373–380

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Jung Y, Kim H, Yoon C (2012) Severe form of persistent Thebesian veins presenting as ischemic heart disease. Korean Circ J 42:714–717

    PubMed Central  PubMed  Google Scholar 

  23. Spindola-Franco H, Grose R, Solomon N (1983) Dual left anterior descending coronary artery, angiographic description of important variants and surgical implications. Am Heart J 105:445–455

    CAS  PubMed  Google Scholar 

  24. Vlodaver Z, Edwards J (1971) Pathology of coronary atherosclerosis. Prog Cardiovasc Dis 14:256–274

    CAS  PubMed  Google Scholar 

  25. Hutchins G, Moore G, Hatton E (1986) Arterial-venous relationships in the human left ventricular myocardium, anatomic basis for countercurrent regulation of blood flow. Circulation 74:1195–1202

    CAS  PubMed  Google Scholar 

  26. Truex R, Angulo A (1952) Comparative study of the arterial and venous systems of the ventricular myocardium with special reference to the coronary sinus. Anat Rec 113:467–491

    CAS  PubMed  Google Scholar 

  27. Widmaider E, Raff H, Strang K (2004) Vander, Sherman, Luciano’s human physiology, the mechanisms of body function, 9th edn. McGraw-Hill, Boston

    Google Scholar 

  28. Spencer J, Anderson S, Iaizzo P (2013) Human coronary venous anatomy for interventions. J Cardiovasc Transl Res 6:208–217

    PubMed  Google Scholar 

  29. Loukas M et al (2009) Cardiac veins, a review of the literature. Clin Anat 22:129–145

    PubMed  Google Scholar 

  30. Ho S, Sanchez-Quintana D, Becker A (2004) A review of the coronary venous system, a road less travelled. Heart Rhythm 1:107–112

    PubMed  Google Scholar 

  31. von Ludinghausen M (2003) The venous drainage of the human myocardium. Adv Anat Embryol Cell Biol 168:1–104

    Google Scholar 

  32. Giudici M, Winston S, Kappler J et al (2002) Mapping the coronary sinus and great cardiac vein. Pacing Clin Electrophysiol 25:414–419

    PubMed  Google Scholar 

  33. Hood W Jr (1968) Regional venous drainage of the human heart. Br Heart J 30:105–109

    PubMed Central  PubMed  Google Scholar 

  34. Silver M, Rowley N (1988) The functional anatomy of the human coronary sinus. Am Heart J 115:1080–1084

    CAS  PubMed  Google Scholar 

  35. Adatia I, Gittenberger-de A (1995) Unroofed coronary sinus and coronary sinus orifice atresia, implications for management of complex congenital heart disease. J Am Coll Cardiol 25:948–953

    CAS  PubMed  Google Scholar 

  36. Malhotra V, Tewari S, Tewari P, Agarwal S (1980) Coronary sinus and its tributaries. Anat Anz 148:331–332

    CAS  PubMed  Google Scholar 

  37. Ratajczyk-Pakalaska E (1990) The coronary venous anatomy. In: Myocardial perfusion, reperfusion, coronary venous retroperfusion. Springer, New York, pp 51–92

    Google Scholar 

  38. El-Maasarany S, Ferrett C, Firth A, Sheppard M, Henin M (2005) The coronary sinus conduit function, anatomical study (relationship to adjacent structures). Europace 7:475–481

    PubMed  Google Scholar 

  39. Vlodaver D, Amplatz M, Burchell M, Edwards M (1976) Coronary heart disease, clinical angiographic, and pathologic profiles. Springer, New York

    Google Scholar 

  40. Roberts J (1958) Arteries, veins, and lymphatic vessels of the heart. In: Development and structure of the cardiovascular system. McGraw-Hill, New York, pp 85–118

    Google Scholar 

  41. Kawashima T, Sato K, Sato F, Sasaki H (2003) An anatomical study of the human cardiac veins with special reference to the drainage of the great cardiac vein. Ann Anat 185:535–542

    PubMed  Google Scholar 

  42. Maros T, Racz L, Plugor S, Maros T (1983) Contributions to the morphology of the human coronary sinus. Anat Anz 154:133–144

    CAS  PubMed  Google Scholar 

  43. Singh J, Houser S, Heist E, Ruskin J (2005) The coronary venous anatomy, a segmental approach to aid cardiac resynchronization therapy. J Am Coll Cardiol 46:68–74

    PubMed  Google Scholar 

  44. Maric I, Bobinac D, Ostojic L, Petkovic M, Dujmovic M (1996) Tributaries of the human and canine coronary sinus. Acta Anat (Basel) 156:61–69

    CAS  Google Scholar 

  45. McAlpine W (1983) Heart and coronary arteries, an anatomical atlas for clinical diagnosis, radiological investigation, and surgical treatment. Springer, New York

    Google Scholar 

  46. Ortale J, Gabriel E, Iost C, Marquez C (2001) The anatomy of the coronary sinus and its tributaries. Surg Radiol Anat 23:15–21

    CAS  PubMed  Google Scholar 

  47. Sun Y, Arruda M, Otomo K et al (2002) Coronary sinus-ventricular accessory connections producing posteroseptal and left posterior accessory pathways, incidence and electrophysiological identification. Circulation 106:1362–1367

    PubMed  Google Scholar 

  48. von Ludinghausen M (1990) Microanatomy of the human coronary sinus and its major tributaries. In: Myocardial perfusion, reperfusion, coronary venous reperfusion. Steinkopff Verlag, Darmstadt, pp 93–122

    Google Scholar 

  49. Pejkovic B, Bogdanovic D (1992) The great cardiac vein. Surg Radiol Anat 14:23–28

    CAS  PubMed  Google Scholar 

  50. Bales G (2004) Great cardiac vein variations. Clin Anat 17:436–443

    PubMed  Google Scholar 

  51. Gerber T, Sheedy P, Bell M et al (2001) Evaluation of the coronary venous system using electron beam computed tomography. Int J Cardiovasc Imaging 17:65–75

    CAS  PubMed  Google Scholar 

  52. Gilard M, Mansourati J, Etienne Y et al (1998) Angiographic anatomy of the coronary sinus and its tributaries. Pacing Clin Electrophysiol 21:2280–2284

    CAS  PubMed  Google Scholar 

  53. Schaffler G, Groell R, Peichel K, Rienmuller R (2000) Imaging the coronary venous drainage system using electron-beam CT. Surg Radiol Anat 22:35–39

    CAS  PubMed  Google Scholar 

  54. Schumacher B, Tebbenjohanns J, Pfieffer D, Omran H, Jung W, Luderitz B (1995) Prospective study of retrograde coronary venography in patients with posteroseptal and left-sided accessory atrioventricular pathways. Am Heart J 130:1031–1039

    CAS  PubMed  Google Scholar 

  55. Jongbloed M et al (2005) Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 45:749–753

    PubMed  Google Scholar 

  56. Pina J (1975) Morphological study on the human anterior cardiac veins, venae cordis anteriores. Acta Anat 92:145–159

    CAS  PubMed  Google Scholar 

  57. Mierzwa J (1975) Variations of the anterior cardiac veins and their orifices in the right atrium in man. Folia Morphol 34:125–132

    CAS  Google Scholar 

  58. Ansari A (2001) Anatomy and clinical significance of ventricular Thebesian veins. Clin Anat 14:102–110

    CAS  PubMed  Google Scholar 

  59. Grant R (1929) Observations on the anatomy of the Thebesian vessels of the heart. Heart 15:103–123

    Google Scholar 

  60. Mochizuki S (1933) Vv cordis. In: Das venensystem der Japaner. Kenkyusha, Kioto, pp 41–64

    Google Scholar 

  61. Bergman R, Thompson S, Saadeh F (1988) Absence of the coronary sinus. Anat Anz 166:9–12

    CAS  PubMed  Google Scholar 

  62. Parsonnet V (1953) The anatomy of the veins of the human heart with special reference to normal anastomotic channels. J Med Soc N J 50:446–452

    CAS  PubMed  Google Scholar 

  63. Anderson S, Quill J, Iaizzo P (2008) Venous valves within left ventricular coronary veins. J Interv Card Electrophysiol 23:95–99

    PubMed  Google Scholar 

  64. Buirski G et al (1986) Superior vena caval abnormalities, their occurrence rate, associated cardiac abnormalities and angiographic classification in a pediatric population with congenital heart disease. Clin Radiol 37:131–138

    CAS  PubMed  Google Scholar 

  65. Pahwa R, Kumar A (2003) Persistent left superior vena cava, an intensivist’s experience and review of the literature. South Med J 96:528–529

    PubMed  Google Scholar 

  66. von Ludinghausen M (1987) Clinical anatomy of cardiac veins, Vv cardiacae. Surg Radiol Anat 9:159–168

    Google Scholar 

  67. Gerlis L et al (1984) Coronary sinus orifice atresia and persistent left superior vena cava: a report of two cases, one associated with atypical coronary artery thrombosis. Br Heart J 52:648–653

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Harris W (1960) A case of bilateral superior venae cavae with a closed coronary sinus. Thorax 15:172–173

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Sahinoglu K et al (1994) Human persistent left superior vena cava with doubled coronary sinus. Ann Anat 176:451–454

    CAS  PubMed  Google Scholar 

  70. Mohl W (1994) Basic considerations and techniques in coronary sinus interventions. In: Coronary sinus interventions in cardiac surgery. R G Landes Company, Austin, pp 1–10

    Google Scholar 

  71. Junqueira LC, Kelley R (1998) Basic histology. Lange, Stamford Appleton

    Google Scholar 

  72. Kessel R (1998) Basic medical histology, the biology of cells, tissues, and organs. Oxford University Press, New York

    Google Scholar 

  73. Baroldi G, Mantero O, Scomazzoni G (1956) The collaterals of the coronary arteries in normal and pathologic hearts. Circ Res 4:223–229

    CAS  PubMed  Google Scholar 

  74. Kitzman D, Edwards W (1990) Age-related changes in the anatomy of the normal human heart. J Gerontol 45:M33–M39

    CAS  PubMed  Google Scholar 

  75. Moberg A (1967) Anatomical and functional aspects of extracardial anastomoses to the coronary arteries. Pathol Microbiol (Basel) 30:689–694

    CAS  Google Scholar 

  76. Waller B et al (1994) Anatomy of the heart. In: Hurst’s the heart. McGraw-Hill, New York, pp 59–112

    Google Scholar 

  77. Leon A (2003) Cardiac resynchronization therapy devices, patient management and follow-up strategies. Rev Cardiovasc Med 4(Suppl 2):S38–S46

    PubMed  Google Scholar 

  78. Oginosawa Y, Abe H, Nakashima Y (2005) Prevalence of venous anatomic variants and occlusion among patients undergoing implantation of transvenous leads. Pacing Clin Electrophysiol 28:425–428

    PubMed  Google Scholar 

  79. Raman S, Morford R, Matthew N et al (2004) Rotational X-ray coronary angiography. Catheter Cardiovasc Interv 63:201–207

    PubMed  Google Scholar 

  80. Maddux J, Wink O, Messenger J et al (2004) Randomized study of the safety and clinical utility of rotational angiography versus standard angiography in the diagnosis of coronary artery disease. Catheter Cardiovasc Interv 62:167–174

    PubMed  Google Scholar 

  81. Coatrieux J, Hernandez A, Mabo P, Garreau M, Haigon, P (2005) Transvenous path finding in cardiac resynchronization therapy. In: Functional imaging and modeling of heart proceedings, pp 236–245

    Google Scholar 

  82. Ansalone G, Giannantoni P, Ricci R, Trambaiolo P, Fedele F, Santini M (2002) Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol 39:489–499

    PubMed  Google Scholar 

  83. Cazeau S, Leclercq C, Lavergne T et al (2001) Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344:873–880

    CAS  PubMed  Google Scholar 

  84. Lambiase P, Rinaldi A, Hauck J et al (2004) Non-contact left ventricular endocardial mapping in cardiac resynchronisation therapy. Heart 90:44–51

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Minz G, Painte J, Pichard A et al (1995) Atherosclerosis in angiographically “normal” coronary artery reference segments, an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 25:1479–1485

    Google Scholar 

  86. Iqbal J, Gunn J, Serruys P (2013) Coronary stents, historical development, current status and future directions. Br Med Bull 106:193–211

    CAS  PubMed  Google Scholar 

  87. Puri R, Worthley M, Nicholls S (2011) Intravascular imaging of vulnerable coronary plaque, current and future concepts. Nat Rev Cardiol 8:131–139

    PubMed  Google Scholar 

  88. de Korte C, van der Steen A, Cespedes E, Pasterkamp G (1998) Intravascular ultrasound elastrography in human arteries, initial experience in vitro. Ultrasound Med Biol 24:401–408

    PubMed  Google Scholar 

  89. Bezerra H, Costa M, Guagliumi G, Rollins A, Simon D (2009) Intracoronary optical coherence tomography, a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2:1035–1046

    PubMed Central  PubMed  Google Scholar 

  90. Cassis L, Lodder R (1993) Near-IR imaging of atheromas in living arterial tissue. Anal Chem 65:1247–1256

    CAS  PubMed  Google Scholar 

  91. Jaross W, Neumeister V, Lattke P, Schuh D (2008) Determination of cholesterol in atherosclerotic plaques using near infrared spectroscopy system. JACC Cardiovasc Imaging 147:327–337

    Google Scholar 

  92. Hoffmann U, Brady T, Muller J (2003) Use of new imaging techniques to screen for coronary artery disease. Circulation 108:e50–e53

    PubMed  Google Scholar 

  93. Bluemke D, Achenbach S, Budoff M, Gerber TG et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography. Circulation 118:1–21

    Google Scholar 

  94. Kantarci M, Karcaaltincaba SD, Karabulut M, Erol N, Yalcin M, Tatli A (2012) Clinical situation in which coronary CT angiography confers superior diagnostic information compared with coronary angiography. Diagn Interv Radiol 18:261–269

    PubMed  Google Scholar 

  95. Earls J, Berman E, Urban B et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique, improved image quality and reduced radiation dose. Radiology 246:742–775

    PubMed  Google Scholar 

  96. Wyler von Ballmoos M, Haring B, Juillerat R, Alkadhi H (2011) Meta-analysis, diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med 154:413–420

    Google Scholar 

  97. Foo T, Ho V, Saranathan M et al (2005) Feasibility of integrating high-spatial-resolution 3D breath-hold coronary MR angiography with myocardial perfusion and viability examinations. Radiology 235:1025–1030

    PubMed  Google Scholar 

  98. Al Moudi M, Sun Z, Lenzo N (2011) Diagnostic value of SPECT, PET and PET/CT in the diagnosis of coronary artery disease, a systematic review. Biomed Imaging Interv J 7, e9

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Mc Ardle B, Dowsley T, deKemp R et al (2012) Does Rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease. J Am Coll Cardiol 60:1828–1837

    PubMed  Google Scholar 

  100. Ormiston J, Serruys P (2009) Bioabsorbable coronary stents. Circ Cardiovasc Interv 2:255–260

    CAS  PubMed  Google Scholar 

  101. Jain A, Smith E, Rothman M (2006) The coronary venous system, an alternative route of access to the myocardium. J Invasive Cardiol 18:563–568

    PubMed  Google Scholar 

  102. Prasad A, Rihal C, Lennon R, Wiste H, Singh M, Holmes D Jr (2007) Trends in outcomes after percutaneous coronary intervention for chronic total occlusions, a 25-year experience from the Mayo Clinic. J Am Coll Cardiol 49:1611–1618

    PubMed  Google Scholar 

  103. Iakovou I, Ge L, Colombo A (2005) Contemporary stent treatment of coronary bifurcations. J Am Coll Cardiol 46:1446–1455

    PubMed  Google Scholar 

  104. Colomba A, Mikhail G, Michev I et al (2005) Treating chronic total occlusions using subintimal tracking and reentry, the STAR technique. Catheter Cardiovasc Interv 64:407–411

    Google Scholar 

  105. Weisz G, Moses J (2007) New percutaneous approaches for chronic total occlusion of coronary arteries. Expert Rev Cardiovasc Ther 5:231–241

    PubMed  Google Scholar 

  106. Horvath K (2008) Transmyocardial laser revascularization. J Card Surg 23:266–276

    PubMed Central  PubMed  Google Scholar 

  107. Oskui PM et al (2014) Improved myocardial perfusion after transmyocardial laser revascularization in a patient with microvascular coronary artery disease. SAGE Open Medical Case Reports 2

    Google Scholar 

  108. Cappato R, Schluter M, Weiss C et al (2007) Mapping of the Coronary Sinus and Great Cardiac Vein Using a 2-French Electrode Catheter and a Right Femoral Approach. J Cardio Electrophys 8:371–376

    Google Scholar 

  109. Stellbrink C, Diem B et al (1997) Transcoronary venous radiofrequency catheter ablation of ventricular tachycardia. J Cardiovasc Electrophysiol 8:916–921

    CAS  PubMed  Google Scholar 

  110. Dosdall D, Rothe D, Brandon T, Sweeney J (2004) Effect of rapid biphasic shock subpulse switching on ventricular defibrillation thresholds. J Cardiovasc Electrophysiol 15:802–808

    PubMed  Google Scholar 

  111. Huang J, Walcott G, Killingsworth C, Smith W, Kenknight B, Ideker R (2002) Effect of rapid biphasic shock subpulse switching on ventricular defibrillation threshold. Pacing Clin Electrophysiol 25:42–48

    CAS  PubMed  Google Scholar 

  112. Nitsch J (1989) Continuous monitoring of coronary perfusion during percutaneous transluminal coronary angioplasty of the left anterior descending artery. J Interv Cardiol 2:205–210

    Google Scholar 

  113. Gundry S (1982) A comparison of retrograde cardioplegia versus antegrade cardioplegia in the presence of coronary artery obstruction. Scientific Session of the American Heart Association, Dallas

    Google Scholar 

  114. Miyazaki A, Tadokoro H, Drury J et al (1991) Retrograde coronary venous administration of recombinant tissue-type plasminogen activator, a unique and effective approach to coronary artery thrombolysis. J Am Coll Cardiol 18:613–620

    CAS  PubMed  Google Scholar 

  115. Thompson C, Nasseri B, Makower J et al (2003) Percutaneous transvenous cellular cardiomyoplasty: a novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol 41:1964–1971

    PubMed  Google Scholar 

  116. Oesterle S, Reifart N, Hauptmann E et al (2001) Percutaneous in situ coronary venous arterialization, report of the first human catheter-based coronary artery bypass. Circulation 103:2539–2543

    CAS  PubMed  Google Scholar 

  117. Barold S (2001) What is cardiac resynchronization therapy? Am J Med 111:224–232

    CAS  PubMed  Google Scholar 

  118. Casey C, Knight B (2004) Cardiac resynchronization pacing therapy. Cardiology 101:72–78

    PubMed  Google Scholar 

  119. Daubert J, Ritter P, Le Breton H et al (1998) Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pacing Clin Electrophysiol 21:239–245

    CAS  PubMed  Google Scholar 

  120. Walker S, Levy T, Rex D et al (2000) Initial United Kingdom experience with the use of permanent, biventricular pacemakers, implantation procedure and technical considerations. Europace 2:233–239

    CAS  PubMed  Google Scholar 

  121. Gasparini M, Mantice M, Galimberti P et al (2003) Is the left ventricular lateral wall the best lead implantation site for cardiac resynchronization therapy? Pacing Clin Electrophysiol 26:162–168

    PubMed  Google Scholar 

  122. Stevenson W, Sweeney M (2004) Single site left ventricular pacing for cardiac resynchronization. Circulation 109:1694–1696

    PubMed  Google Scholar 

  123. Valls-Bertault V, Mansourati J, Gilard M, Etienne Y et al (2001) Adverse events with transvenous left ventricular pacing in patients with severe heart failure, early experience from a single centre. Europace 3:60–63

    CAS  PubMed  Google Scholar 

  124. Abraham W et al (2004) Effects of cardiac resynchronization on disease progression in patients with left ventricular systolic dysfunction, an indication for an implantable cardioverter-defibrillator and mildly symptomatic chronic heart failure. Circulation 110:2864–2868

    PubMed  Google Scholar 

  125. Alonso C, Leclercq C, d’Allonnes F et al (2001) Six year experience of transvenous left ventricular lead implantation for permanent biventricular pacing in patients with advanced heart failure, technical aspects. Heart 86:405–410

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Rossillo A et al (2004) Impact of coronary sinus lead position on biventricular pacing, mortality and echocardiographic evaluation during long-term follow-up. J Cardiovasc Electrophysiol 15:1120–1125

    PubMed  Google Scholar 

  127. Conti C (2006) Cardiac resynchronization therapy for chronic heart failure, why does it not always work? Clin Cardiol 29:335–336

    PubMed  Google Scholar 

  128. Yu C, Wing-Hong F, Zhang Q, Sanderson J (2005) Understanding nonresponders of cardiac resynchronization therapy – current and future perspectives. J Cardiovasc Electrophysiol 16:1117–1124

    PubMed  Google Scholar 

  129. Mair H, Sachweh J, Meuris B et al (2005) Surgical epicardial left ventricular lead versus coronary sinus lead placement in biventricular pacing. Eur J Cardiothorac Surg 27:235–242

    PubMed  Google Scholar 

  130. Fisher J et al (1984) Attempted nonsurgical electrical ablation of accessory pathways via the coronary sinus in the Wolff-Parkinson-White syndrome. J Am Coll Cardiol 4:685–694

    CAS  PubMed  Google Scholar 

  131. Haissaguerre M et al (1992) Radiofrequency catheter ablation of left lateral accessory pathways via the coronary sinus. Circulation 86:1464–1468

    CAS  PubMed  Google Scholar 

  132. Gaita F, Riccard P, Ferraro A (2002) Cryothermic ablation within the coronary sinus of an epicardial posterolateral pathway. J Cardiovasc Electrophysiol 13:1160–1163

    PubMed  Google Scholar 

  133. Haissaguerre M et al (2007) Impact of catheter ablation of the coronary sinus on paroxysmal or persistent atrial fibrillation. J Cardiovasc Electrophysiol 18:378–386

    PubMed  Google Scholar 

  134. Banai S et al (2007) Coronary sinus reducer stent for the treatment of chronic refractory angina pectoris, a prospective, open label, multicenter, safety feasibility first-in-man study. J Am Coll Cardiol 49:1783–1789

    PubMed  Google Scholar 

  135. Harnek J et al (2011) Transcatheter implantation of the MONARC coronary sinus device for mitral regurgitation, 1 year results from the EVOLUTION phase I study. JACC Cardiovasc Interv 4:115–122

    PubMed  Google Scholar 

  136. Choure A et al (2006) In vivo analysis of the anatomical relationship of coronary sinus to mitral annulus and left circumflex coronary artery using cardiac multidetector computed tomography. J Am Coll Cardiol 15:1938–1945

    Google Scholar 

  137. Tacker W, Vanvleet J, Schoenlein W, Janas W et al (1998) Post-mortem changes after lead extraction from the ovine coronary sinus and great cardiac vein. Pacing Clin Electrophysiol 21:296–298

    CAS  PubMed  Google Scholar 

  138. De Martino G, Orazi S, Bisignani G et al (2005) Safety and feasibility of coronary sinus left ventricular leads extraction, a preliminary report. J Interv Card Electrophysiol 13:35–38

    PubMed  Google Scholar 

  139. Rickard J, Tarakji K, Cronin E et al (2012) Cardiac venous left ventricular lead removal and reimplantation following device infection. J Cardiovasc Electrophysiol 23:1213–1216

    PubMed  Google Scholar 

  140. Sheldon S, Friedman P, Hayes D et al (2012) Outcomes and predictors of difficulty with coronary sinus lead removal. J Interv Card Electrophysiol 35:93–100

    PubMed  Google Scholar 

  141. Cronin E, Ingelmo C, Rickard J et al (2012) Active fixation mechanism complicates coronary sinus lead extraction and limits subsequent reimplantation targets. J Interv Card Electrophysiol 36:81–86

    PubMed  Google Scholar 

  142. Maytin M, Carillo R, Baltodano P (2012) Multicenter experience with transvenous lead extraction of active fixation coronary sinus leads. Pacing Clin Electrophysiol 35:641–647

    PubMed  Google Scholar 

  143. Anderson S, Hill A, Iaizzo P (2009) Microanatomy of human left ventricular coronary veins. Anat Rec 292:23–28

    Google Scholar 

  144. Dodge J Jr, Brown B, Bolson E (1992) Lumen diameter of normal human coronary arteries: influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86:232–246

    PubMed  Google Scholar 

  145. Zubaid M, Buller C, Mancini G (2002) Normal angiographic tapering of the coronary arteries. Can J Cardiol 18:973–980

    PubMed  Google Scholar 

  146. Ono T, Shimohara Y, Okada K, Irino S (1986) Scanning electron microscopic studies on microvascular architecture of human coronary vessels by corrosion casts, normal and focal necrosis. Scan Electron Microsc 263–270

    Google Scholar 

  147. Hellerstein H, Orbison J (1951) Anatomic variations of the orifice of the human coronary sinus. Circulation 3:514–523

    CAS  PubMed  Google Scholar 

  148. Potkin B, Roberts W (1987) Size of coronary sinus at necropsy in subjects without cardiac disease and in patients with various cardiac conditions. Am J Cardiol 60:1418–1421

    Google Scholar 

  149. Spencer J, Prahl G, Iaizzo P (2014) The prevalence of coronary sinus and left circumflex artery overlap in relation to the mitral valve. J Interv Cardiol 27:308–316

    PubMed  Google Scholar 

  150. Ge J, Erbel R, Gerger T et al (1994) Intravascular ultrasound imaging of angiographically normal coronary arteries: a prospective study in vivo. Br Heart J 71:572–578

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Piffer C, Piffer M, Zoretto N (1990) Anatomic data of the human coronary sinus. Anat Anz 170:21–29

    CAS  PubMed  Google Scholar 

  152. Felle P, Bannigan J (1994) Anatomy of the valve of the coronary sinus (Thebesian valve). Clin Anat 7:10–12

    Google Scholar 

  153. Hill A, Ahlberg S, Wilkoff B, Iaizzo P (2006) Dynamic obstruction to coronary sinus access, the Thebesian valve. Heart Rhythm 3:1240–1241

    PubMed  Google Scholar 

  154. Hill A, Coles J Jr, Sigg D, Laske T, Iaizzo P (2003) Images of the human coronary sinus ostium obtained from isolated working hearts. Ann Thorac Surg 76:2108

    PubMed  Google Scholar 

  155. Jatene M, Jatene F, Costa R et al (1991) Anatomical study of the coronary sinus valve – Thebesius valve. Chest 100(Suppl):90S

    Google Scholar 

  156. Spencer J, Larson A, Drake R, Iaizzo P (2014) A detailed assessment of the human coronary venous system using contrast computed tomography of perfusion-fixed specimens. Heart Rhythm 11:282–288

    PubMed  Google Scholar 

  157. Andserson S, Hill A, Iaizzo P (2007) Venous valves, unseen obstructions to coronary access. J Interv Card Electrophysiol 19:165–166

    Google Scholar 

  158. Achenbach S, Kessler W, Moshage W et al (1997) Visualization of the coronary arteries in three-dimensional reconstructions using respiratory gated magnetic resonance imaging. Coron Artery Dis 8:441–448

    CAS  PubMed  Google Scholar 

  159. Achenbach S, Ulzheimer S, Baum U et al (2000) Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation 102:2823–2828

    CAS  PubMed  Google Scholar 

  160. Li D, Kaushikkar S, Haacke E et al (1996) Coronary arteries, three-dimensional MR imaging with retrospective respiratory gating. Radiology 201:857–863

    CAS  PubMed  Google Scholar 

  161. Gradus-Pizlo I, Feigenbaum H (2002) Imaging of the left anterior descending coronary artery by high-frequency transthoracic and epicardial echocardiography. Am J Cardiol 90:28L–31L

    PubMed  Google Scholar 

  162. Kim W, Stuber M, Bornert P, Kissinger K et al (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 299:296

    Google Scholar 

  163. Basso C, Thiene G (2005) Adipositas cordis, fatty infiltration of the right ventricle, and arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Pathol 14:37–41

    PubMed  Google Scholar 

  164. Corradi D, Maestri R, Callegari S et al (2004) The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc Pathol 13:313–316

    PubMed  Google Scholar 

  165. Hangertner J, Marley N, Whitehead A, Thomas A, Davies M (1985) The assessment of cardiac hypertrophy at autopsy. Histopathology 9:1295–1306

    Google Scholar 

  166. Reiner L, Mazzoleni A, Rodriguez F, Freudenthal R (1959) The weight of the human heart. I. Normal cases. AMA Arch Pathol 68:58–73

    CAS  PubMed  Google Scholar 

  167. Shirani J, Berezowski K, Roberts W (1995) Quantitative measurement of normal and excessive (cor adiposum) subepicardial adipose tissue, its clinical significance, and its effect on electrocardiographic QRS voltage. Am J Cardiol 76:414–418

    CAS  PubMed  Google Scholar 

  168. Sons H, Hoffmann V (1986) Epicardial fat cell size, fat distribution and fat infiltration of the right and left ventricle of the heart. Anat Anz 161:355–373

    CAS  PubMed  Google Scholar 

  169. Rokey R, Mulvagh S, Cheirif J, Mattox K, Johnston D (1989) Lipomatous encasement and compression of the heart, antemortem diagnosis by cardiac nuclear magnetic resonance imaging and catheterization. Am Heart J 117:952–953

    CAS  PubMed  Google Scholar 

  170. Anderson S, Iaizzo P (2010) Effect of pacing lead positions and venous microanatomy on pacing parameters. J Electrocardiol 43:136–141

    PubMed  Google Scholar 

  171. Mao S, Shinbane J, Girsky M et al (2005) Coronary venous imaging with electron beam computed tomographic angiography, three-dimensional mapping and relationship with coronary arteries. Am Heart J 150:315–322

    PubMed  Google Scholar 

  172. Spencer J, Sundaram C, Iaizzo P (2014) The relative anatomy of the coronary arterial and venous systems: implications for coronary interventions. Clin Anat 27:1023–1029

    PubMed  Google Scholar 

  173. Maselli D et al (2006) Percutaneous mitral annuloplasty, an anatomic study of human coronary sinus and its relation with mitral valve annulus and coronary arteries. Circulation 114:377–380

    PubMed  Google Scholar 

  174. Hansky B et al (2007) Implantation of active fixation leads in coronary veins for left ventricular stimulation, report of five cases. Pacing Clin Electrophysiol 30:44–49

    PubMed  Google Scholar 

  175. Nagele H et al (2007) First experience with a new active fixation coronary sinus lead. Europace 9:437–441

    CAS  PubMed  Google Scholar 

  176. Bates R, Toscano M, Balderman S, Anagnostopoulos C (1977) The cardiac veins and retrograde coronary venous perfusion. Ann Thorac Surg 23:83–90

    CAS  PubMed  Google Scholar 

  177. Oesterle S, Reifart N, Hayase M et al (2003) Catheter-based coronary bypass, a development update. Catheter Cardiovasc Interv 58:212–218

    PubMed  Google Scholar 

  178. Schoger J et al (2009) Percutaneous mitral annuloplasty for functional mitral regurgitation, result of the CARILLON Mitral Annuloplasty Device European Union Study. Circulation 120:326–333

    Google Scholar 

  179. Siminiak T et al (2012) Treatment of functional mitral regurgitation by percutaneous annuloplasty, results of the TITAN trial. Eur J Heart Fail 14(8):931–938

    PubMed Central  PubMed  Google Scholar 

  180. Machaalany J et al (2013) Treatment of functional mitral valve regurgitation with the permanent percutaneous transvenous mitral annuloplasty system. Am Heart J 165:761–769

    PubMed  Google Scholar 

  181. Wong K, Lim C, Sadarim P (2011) High incidence of acute sub-clinical circumflex artery ‘injury’ following mitral isthmus ablation. Eur Heart J 32:1881–1890

    PubMed  Google Scholar 

  182. Biffi M et al (2009) Phrenic stimulation, a challenge for cardiac resynchronization therapy. Circ Arrhythm Electrophysiol 2:402–410

    PubMed  Google Scholar 

  183. Yokokawa M et al (2011) Impact of mitral isthmus anatomy on the likelihood of achieving linear block in patients undergoing catheter ablation of persistent atrial fibrillation. Heart Rhythm 8:1404–1410

    PubMed  Google Scholar 

  184. Becker A (2004) Left atrial isthmus, anatomic aspects relevant for linear catheter ablation procedures in humans. J Cardiovasc Electrophysiol 15:809–812

    PubMed  Google Scholar 

  185. Wong K et al (2011) Larger coronary sinus diameter predicts the need for epicardial delivery during mitral isthmus ablation. Europace 13:555–561

    PubMed  Google Scholar 

  186. Wong K, Betts T (2012) A review of mitral isthmus ablation. Indian Pacing Electrophysiol J 12:152–170

    PubMed Central  PubMed  Google Scholar 

  187. Abbara S et al (2005) Noninvasive evaluation of cardiac veins with 16-MDCT angiography. AJR Am J Roentgenol 185:1001–1006

    PubMed  Google Scholar 

  188. Muhlenbruch G et al (2005) Imaging of the cardiac venous system, comparison of MDCT and conventional angiography. AJR Am J Roentgenol 185:1252–1257

    PubMed  Google Scholar 

  189. Tada H et al (2005) Three-dimensional visualization of the coronary venous system using multidetector row computed tomography. Circ J 69:165–170

    PubMed  Google Scholar 

  190. Van de Veire N et al (2006) Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol 48:1832–1838

    PubMed  Google Scholar 

  191. Manzke R et al (2011) Assessment of the coronary venous system in heart failure patients by blood pool agent enhanced whole-heart MRI. Eur Radiol 21:799–806

    PubMed  Google Scholar 

  192. Ludinghausen M (2003) The clinical anatomy of coronary arteries. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julianne H. Spencer PhD .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Movie 8.1. This movie illustrates a semitransparent heart as it rotates about its vertical axis. The path of the coronary sinus is highlighted during the first portion of the movie. The three leads implanted during cardiac resynchronization therapy are shown and labeled (MPEG 4,511 KB)

Movie 8.2. This movie is an example of a valve covering a venous contributor ostia (MPEG 860 KB)

Movie 8.3. This movie shows a venogram in an isolated heart. It illustrates a catheter cannulating the coronary sinus ostium, then switches to a fluoroscopic view of the heart, where the coronary veins become opaque as a contrast agent is injected (MPEG 7,187 KB)

145597_3_En_8_MOESM4_ESM.avi

Movie 8.4. Stent implantation procedure. A guide wire is delivered through the left coronary ostium to the LAD. A CordisBx Velocity Rx® balloon expandable stent (4.0 mm inner diameter, 23 mm length) is then advanced over the guide wire. The stent is deployed by inflating the balloon to the manufacturer’s recommended pressure. The catheter is removed and the fiberscope, which is positioned distal to the stent, is advanced retrograde through the stent. Three-dimensional anatomical reconstructions using contrast-computed tomography scans and MIMICs Software (Materialise, Leuven, Belgium) are shown to visualize the stent’s placement in the LAD relative to the other major coronary arteries (MPEG 242,376 KB)

Movie 8.5. This animated movie depicts coronary sinus cannulation and lead placement in basal, midventricular, and apical locations during a biventricular pacing implant procedure (MPEG 3,959 KB)

Movie 8.6. 3D reconstruction of contrast-computed tomography images for the coronary arterial and venous systems (MP4 1,141 KB)

145597_3_En_8_MOESM4_ESM.avi

Movie 8.4. Stent implantation procedure. A guide wire is delivered through the left coronary ostium to the LAD. A CordisBx Velocity Rx® balloon expandable stent (4.0 mm inner diameter, 23 mm length) is then advanced over the guide wire. The stent is deployed by inflating the balloon to the manufacturer’s recommended pressure. The catheter is removed and the fiberscope, which is positioned distal to the stent, is advanced retrograde through the stent. Three-dimensional anatomical reconstructions using contrast-computed tomography scans and MIMICs Software (Materialise, Leuven, Belgium) are shown to visualize the stent’s placement in the LAD relative to the other major coronary arteries (MPEG 242,376 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spencer, J.H., Anderson, S.E., Lahm, R., Iaizzo, P.A. (2015). The Coronary Vascular System and Associated Medical Devices. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_8

Download citation

Publish with us

Policies and ethics