Skip to main content

Abstract

Just as there are a range of pediatric imaging techniques available during life, a similar repertoire is available as part of the fetal and perinatal postmortem (PM) examination. This chapter gives an overview of the spectrum of radiological imaging modalities currently available in perinatal pathology, covering fetal and neonatal imaging. This covers the diagnostic utility of PM radiographs or X-rays, ultrasound, CT, and MRI in this clinical setting. Each modality is presented with an explanation of how the technique works and how the images are acquired, what the relative advantages and disadvantages of each technology are, and how they may be best employed in the postmortem perinatal setting, with reference to current literature on diagnostic accuracy, where available. The need for appropriate training in the interpretation of normal PM changes is highlighted, and future directions for improving PM imaging in this context is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shojania KG, Burton EC. The vanishing nonforensic autopsy. N Engl J Med. 2008;358:873–5.

    Article  CAS  Google Scholar 

  2. Sieswerda-Hoogendoorn T, van Rijn RR. Current techniques in postmortem imaging with specific attention to paediatric applications. Pediatr Radiol. 2010;40:141–52.

    Article  Google Scholar 

  3. Centre for Maternal Enquiries. Saving mothers’ lives: reviewing maternal deaths to make motherhood safer: 2006–2008. The eighth report of the confidential enquiries into maternal deaths in the United Kingdom. BJOG. 2011;118:1–203.

    Google Scholar 

  4. McHaffie HE, Fowlie PW, Hume R, et al. Consent to autopsy for neonates. Arch Dis Child Fetal Neonatal Ed. 2001;85:F4–7.

    Article  CAS  Google Scholar 

  5. Vogt C, Blaas HG, Salvesen KÅ, Eik-Nes SH. Comparison between prenatal ultrasound and postmortem findings in fetuses and infants with developmental anomalies. Ultrasound Obstet Gynecol. 2012;39:666–72.

    Article  CAS  Google Scholar 

  6. Arthurs OJ, Taylor AM, Sebire NJ. Indications, advantages and limitations of perinatal postmortem imaging in clinical practice. Pediatr Radiol. 2015;45:491–500.

    Article  Google Scholar 

  7. Arthurs OJ, van Rijn RR, Sebire NJ. Current status of paediatric postmortem imaging: an ESPR questionnaire-based survey. Pediatr Radiol. 2014;44:244–51.

    Article  Google Scholar 

  8. Calder AD, Offiah AC. Fetal radiography for suspected skeletal dysplasia: technique, normal appearances, diagnostic approach. Pediatr Radiol. 2015;45:536–48.

    Article  Google Scholar 

  9. Arthurs OJ, Calder AD, Klein WM. Is there still a role for fetal and perinatal postmortem radiography? J Forensic Radiol Imaging. 2015;3:5–11.

    Article  Google Scholar 

  10. Royal College of Pathologists Working Party on the Autopsy. Guidelines on autopsy practice: scenario 9: stillborn infant (singleton). 2006; http://www.rcpath.org/Resources/RCPath/Migrated%20Resources/Documents/G/G001Autopsy-Stillbirths-Jun06.pdf. Accessed 01 Oct 2014.

  11. Foote GA, Wilson AJ, Stewart JH. Perinatal postmortem radiography – experience with 2500 cases. Br J Radiol. 1978;51:351–6.

    Article  CAS  Google Scholar 

  12. Cremin BJ, Draper R. The value of radiography in perinatal deaths. Pediatr Radiol. 1981;11:143–6.

    Article  CAS  Google Scholar 

  13. Kalifa G, Barbet JP, Labbe F, Houette A, Sellier N. Value of systematic postmortem radiographic examinations of fetuses – 400 cases. Pediatr Radiol. 1989;19:111–3.

    Article  CAS  Google Scholar 

  14. Bourlière-Najean B, Russel AS, Panuel M, et al. Value of fetal skeletal radiographs in the diagnosis of fetal death. Eur Radiol. 2003;13:1046–9.

    PubMed  Google Scholar 

  15. Seppanen U. The value of perinatal postmortem radiography: experience of 514 cases. Ann Clin Res. 1985;44:1–59.

    Google Scholar 

  16. Olsen O, Espeland A, Maartman-Moe H, Lachman R, Rosendahl K. Diagnostic value of radiography in cases of perinatal death: a population based study. Arch Dis Child Fetal Neonatal Ed. 2003;88:F521–4.

    Article  CAS  Google Scholar 

  17. Arthurs OJ, Calder AC, Kiho L, Taylor AM, Sebire NJ. Routine perinatal and paediatric post-mortem radiography: detection rates and practice implications. Pediatr Radiol. 2014;44:252–7.

    Article  Google Scholar 

  18. Charlier P, Chaillot PF, Watier L, et al. Is postmortem ultrasonography a useful tool for forensic purposes? Med Sci Law. 2013;3:227–34.

    Article  Google Scholar 

  19. Breeze ACG, Jessop FA, Whitehead AL, et al. Feasibility of percutaneous organ biopsy as part of a minimally invasive perinatal autopsy. Virchows Arch. 2008;452:201–7.

    Article  CAS  Google Scholar 

  20. Garg S, Basu S, Mohan H, Bal A. Comparison of needle autopsy with conventional autopsy in neonates. Fetal Pediatr Pathol. 2009;28:139–50.

    Article  Google Scholar 

  21. Fariña J, Millana C, Fdez-Aceñero J, et al. Ultrasonographic autopsy (echopsy): a new autopsy technique. Virchows Arch. 2002;440:635–9.

    Article  Google Scholar 

  22. Roberts ISD, Benamore RE, Benbow EW, et al. Postmortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet. 2012;379:136–42.

    Article  Google Scholar 

  23. Ruder TD, Hatch GM, Ebert LC, et al. Whole body postmortem magnetic resonance angiography. J Forensic Sci. 2012;57:778–82.

    Article  Google Scholar 

  24. O’Donoghue K, O’Regan KN, Sheridan CP, et al. Investigation of the role of computed tomography as an adjunct to autopsy in the evaluation of stillbirth. Eur J Radiol. 2012;81:1667–75.

    Article  Google Scholar 

  25. Sakurai T, Michiue T, Ishikawa T, et al. Postmortem CT investigation of skeletal and dental maturation of the fetuses and newborn infants: a serial case study. Forensic Sci Med Pathol. 2012;8:351–7.

    Article  Google Scholar 

  26. Proisy M, Marchand AJ, Loget P, et al. Whole-body postmortem computed tomography compared with autopsy in the investigation of unexpected death in infants and children. Eur Radiol. 2013;23:1711–9.

    Article  Google Scholar 

  27. Oyake Y, Aoki T, Shiotani S, et al. Postmortem computed tomography for detecting causes of sudden death in infants and children: retrospective review of cases. Radiat Med. 2006;24:493–502.

    Article  Google Scholar 

  28. Grabherr S, Doenz F, Steger B, et al. Multi-phase postmortem CT angiography: development of a standardized protocol. Int J Leg Med. 2011;125:791–802.

    Article  Google Scholar 

  29. Bruguier C, Mosimann PJ, Vaucher P, et al. Multi-phase postmortem CT angiography: recognizing technique-related artefacts and pitfalls. Int J Leg Med. 2013;127:639–52.

    Article  CAS  Google Scholar 

  30. Votino C, Cannie M, Segers V, et al. Virtual autopsy by computed tomographic angiography of the fetal heart: a feasibility study. Ultrasound Obstet Gynecol. 2012;39:679–84.

    Article  CAS  Google Scholar 

  31. Rutty GN, Brough A, Biggs MJ, et al. The role of micro-computed tomography in forensic investigations. Forensic Sci Int. 2013;225:60–6.

    Article  CAS  Google Scholar 

  32. Lombardi CM, Zambelli V, Botta G, Moltrasio F, Cattoretti G, Lucchini V, et al. Post-mortem micro-computed tomography (micro-CT) of small fetuses and hearts. Ultrasound Obstet Gynecol. 2014;44:600–9.

    Article  CAS  Google Scholar 

  33. Brookes JA, Hall-Craggs MA, Sams VR, Lees WR. Non-invasive perinatal necropsy by magnetic resonance imaging. Lancet. 1996;348:1139–41.

    Article  CAS  Google Scholar 

  34. Woodward PJ, Sohaey R, Harris DP, et al. Postmortem fetal MR imaging: comparison with findings at autopsy. AJR Am J Roentgenol. 1987;168:41–6.

    Article  Google Scholar 

  35. Griffiths PD, Paley MNJ, Whitby EH. Postmortem MRI as an adjunct to fetal or neonatal autopsy. Lancet. 2005;365:1271–3.

    Article  CAS  Google Scholar 

  36. Thayyil S, Schievano S, Robertson NJ, et al. A semi-automated method for non-invasive internal organ weight estimation by postmortem magnetic resonance imaging in fetuses, newborns and children. Eur J Radiol. 2009;72:321–6.

    Article  Google Scholar 

  37. Prodhomme O, Seguret F, Martrille L, et al. Organ volume measurements: comparison between MRI and autopsy findings in infants following sudden unexpected death. Arch Dis Child Fetal Neonatal Ed. 2012;97:F434–8.

    Article  Google Scholar 

  38. Votino C, Verhoye M, Segers V, et al. Fetal organ weight estimation by postmortem high-field magnetic resonance imaging before 20 weeks’ gestation. Ultrasound Obstet Gynecol. 2012;39:673–8.

    Article  CAS  Google Scholar 

  39. Thayyil S, Sebire NJ, Chitty LS, For the MARIAS Collaborative Group, et al. Postmortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet. 2013;382:223–33.

    Article  Google Scholar 

  40. Arthurs OJ, Thayyil S, Olsen OE, Addison S, Wade A, Jones R, et al. Diagnostic accuracy of postmortem MRI for thoracic abnormalities in fetuses and children. Eur Radiol. 2014;24:2876–84.

    Article  Google Scholar 

  41. Arthurs OJ, Thayyil S, Addison S, Wade A, Jones R, Norman W, et al. Diagnostic accuracy of postmortem MRI for musculoskeletal abnormalities in fetuses and children. Prenat Diagn. 2014;34:1254–1261. doi:10.1002/pd.4460.

    Article  Google Scholar 

  42. Taylor AM, Sebire NJ, Ashworth MT, Schievano S, Scott RJ, Wade A, et al. Postmortem cardiovascular magnetic resonance imaging in fetuses and children: a masked comparison study with conventional autopsy. Circulation. 2014;129:1937–44.

    Article  Google Scholar 

  43. Arthurs OJ, Barber J, Taylor AM, Sebire NJ. Normal appearances on perinatal and paediatric postmortem magnetic resonance imaging (PMMR). Pediatr Radiol. 2015;45(4):527–35.

    Article  Google Scholar 

  44. Thayyil S, Cleary JO, Sebire NJ, Scott RJ, Chong K, Gunny R, et al. Post-mortem examination of human fetuses: a comparison of whole-body high-field MRI at 9.4T with conventional MRI and invasive autopsy. Lancet. 2009;374:467–75.

    Article  Google Scholar 

  45. Sebire NJ, Miller S, Jacques TS, Taylor AM, Rennie JM, Kendall G, et al. Post-mortem apparent resolution of fetal ventriculomegaly: evidence from magnetic resonance imaging. Prenat Diagn. 2013;33:360–4.

    PubMed  Google Scholar 

  46. Liebrechts-Akkerman G, Liu F, Lao O, et al. PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population. Int J Leg Med. 2014;128:621–9.

    Google Scholar 

  47. Evans A, Bagnall RD, Duflou J, Semsarian C. Postmortem review and genetic analysis in sudden infant death syndrome: an 11-year review. Hum Pathol. 2013;44:1730–6.

    Article  CAS  Google Scholar 

  48. Sebire NJ, Weber MA, Thayyil S, et al. Minimally invasive perinatal autopsies using magnetic resonance imaging and endoscopic postmortem examination (“keyhole autopsy”): feasibility and initial experience. J Matern Fetal Neonatal Med. 2012;25:513–8.

    Article  Google Scholar 

  49. Ben-Sasi K, Chitty LS, Franck LS, et al. Acceptability of a minimally invasive perinatal/paediatric autopsy: healthcare professionals’ views and implications for practice. Prenat Diagn. 2013;33:307–12.

    CAS  PubMed  Google Scholar 

  50. Breeze AC, Jessop FA, Set PA, et al. Minimally-invasive fetal autopsy using magnetic resonance imaging and percutaneous organ biopsies: clinical value and comparison to conventional autopsy. Ultrasound Obstet Gynecol. 2011;37:317–23.

    Article  CAS  Google Scholar 

  51. Cannie M, Votino C, Moerman P, et al. Acceptance, reliability and confidence of diagnosis of fetal and neonatal virtuopsy compared with conventional autopsy: a prospective study. Ultrasound Obstet Gynecol. 2012;39:659–65.

    Article  CAS  Google Scholar 

  52. Arthurs OJ, van Rijn RR, Taylor AM, Sebire NJ. Paediatric and perinatal postmortem imaging: the need for a subspecialty approach. Pediatr Radiol. 2015;45:483–90.

    Article  Google Scholar 

  53. Arthurs OJ, Taylor AM, Sebire NJ. The less-invasive perinatal autopsy: current status and future directions. Fetal Matern Med Rev. 2013;24:45–59.

    Article  Google Scholar 

  54. Arthurs OJ, Chitty LS, Judge-Kronis L, Sebire NJ. Postmortem magnetic resonance appearances of congenital high airway obstruction syndrome. Pediatr Radiol. 2015;45:556–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen J. Arthurs PhD, FRCR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Arthurs, O.J., Sebire, N.J. (2015). Perinatal Imaging. In: Khong, T.Y., Malcomson, R.D.G. (eds) Keeling’s Fetal and Neonatal Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-19207-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19207-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19206-2

  • Online ISBN: 978-3-319-19207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics