Skip to main content

Skeletal Muscle and Peripheral Nerves

  • Chapter

Abstract

Neuromuscular disorders in the fetus and neonate are rare and diverse with overlapping clinical features and genetic causes. Presentation typically is with contractures alone or with additional features such as hydrops, pulmonary hypoplasia, and cleft palate constituting the fetal akinesia syndrome. Neonates may also present with congenital hypotonia. These disorders include amyoplasia, spinal muscular atrophies, congenital myopathies, the congenital muscular dystrophies, congenital myasthenic syndromes, metabolic myopathies, and inherited peripheral neuropathies. A thorough, multidisciplinary approach is required to the diagnosis of these disorders and is described at the end of this chapter along with the approach to the perinatal neuromuscular autopsy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tajbakhsh S, Buckingham M. The birth of muscle progenitor cells in the mouse: spatiotemporal considerations. Curr Top Dev Biol. 2000;48:225–68.

    Article  CAS  PubMed  Google Scholar 

  2. Buckingham M, Mayeuf A. Skeletal muscle development. In: Hill JA, Olson EN, editors. Muscle – fundamental biology and mechanism of disease, vol. 1. Amsterdam: Elsevier; 2012. p. 749–61.

    Google Scholar 

  3. Buckingham M, Bajard L, Chang T, et al. The formation of skeletal muscle: from somite to limb. J Anat. 2003;202:59–68.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bailey P, Holowacz T, Lassar A. The origin of skeletal muscle stem cells in the embryo and adult. Curr Opin Cell Biol. 2001;13:679–89.

    Article  CAS  PubMed  Google Scholar 

  5. Yan X, Zhu M-J, Dodson MV, et al. Developmental programming of fetal skeletal muscle and adipose tissue development. J Genom. 2013;1:29–38.

    Article  Google Scholar 

  6. Hall J. Analysis of Pena Shokeir phenotype (Invited editorial comment). Am J Med Genet. 1986;25:99–117.

    Article  CAS  PubMed  Google Scholar 

  7. Hall J. Arthrogryposes (multiple congenital contractures). In: Rimoin D, editor. Principles and practise of medical genetics. 4th ed. New York: Churchill Livingstone; 2002. p. 4182–235.

    Google Scholar 

  8. Hall JG. Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics and general principles. Eur J Med Genet. 2014;1–9.

    Google Scholar 

  9. Porter H. Lethal arthrogryposis multiplex congenita (fetal akinesia deformation sequence, FADS). Pediatr Pathol. 1995;15:617–37.

    CAS  Google Scholar 

  10. Pena S, Shokeir M. Syndrome of camptodactyly, multiple ankyloses, facial anomalies, and pulmonary hypoplasia: a lethal condition. J Pediatr. 1974;85:373–5.

    Article  CAS  PubMed  Google Scholar 

  11. Chen H, Blumberg B, Immken L, et al. The Pena-Shokeir syndrome: report of five cases and further delineation of the syndrome. Am J Med Genet. 1983;16:213–24.

    Article  CAS  PubMed  Google Scholar 

  12. Herva R, Leisti J, Kirkinen P, et al. A lethal autosomal recessive syndrome of multiple congenital contractures. Am J Med Genet. 1985;20:431–9.

    Article  CAS  PubMed  Google Scholar 

  13. Lindhout D, Hageman G, Beemer F, et al. The Pena-Shokeir syndrome: report of nine Dutch cases. Am J Med Genet. 1985;21:655–68.

    Article  CAS  PubMed  Google Scholar 

  14. Moessinger A. Fetal akinesia deformation sequence: an animal model. Pediatrics. 1983;72:857–63.

    CAS  PubMed  Google Scholar 

  15. Witters I, Moerman P, Fryns J. Fetal akinesia deformation sequence: a study of 30 consecutive in utero diagnoses. Am J Med Genet. 2002;113:23–8.

    Article  PubMed  Google Scholar 

  16. Hall J, Reed S, Driscoll E. Part I Amyoplasia: a common sporadic condition with congenital contractures. Am J Med Genet. 1983;15:571–90.

    Article  CAS  PubMed  Google Scholar 

  17. Hall J, Reed S, McGillivray B, et al. Part II Amyoplasia: twinning in amyoplasia – a specific type of arthrogryposis with an apparent excess of discordantly affected identical twins. Am J Med Genet. 1983;15:591–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hall JG, Aldinger KA, Tanaka KI. Amyoplasia revisited. Am J Med Genet. 2014;164A:700–30.

    Article  PubMed  Google Scholar 

  19. Banker B. Arthrogryposis multiplex congenita: spectrum of pathologic changes. Hum Pathol. 1986;17:656–72.

    Article  CAS  PubMed  Google Scholar 

  20. Clarren S, Hall J. Neuropathologic findings in spinal cords of 10 infants with arthrogryposis. J Neurol Sci. 1983;58:89–102.

    Article  CAS  PubMed  Google Scholar 

  21. Banker B. Neuropathologic aspects of arthrogryposis multiplex congenita. Clin Orthop Relat Res. 1985;194:30–43.

    Google Scholar 

  22. Cox P, Brueton L, Bjelogrlic P, et al. Diversity of neuromuscular pathology in lethal multiple pterygium syndrome. Pediatr Dev Pathol. 2002;6:59–68.

    Article  PubMed  Google Scholar 

  23. Froster U, Stallmach T, Wisser J, et al. Lethal multiple pterygium syndrome: suggestion for a consistent pathological workup and review of reported cases. Am J Med Genet. 1997;68:82–5.

    Article  CAS  PubMed  Google Scholar 

  24. Moerman P, Fryns J, Cornelis A, et al. Pathogenesis of the lethal multiple pterygium syndrome. Am J Med Genet. 1990;35:415–21.

    Article  CAS  PubMed  Google Scholar 

  25. Hall J. Editorial comment: the lethal multiple pterygium syndromes. Am J Med Genet. 1984;17:803–7.

    Article  CAS  PubMed  Google Scholar 

  26. Morgan NV, Brueton LA, Cox P, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome. Am J Hum Genet. 2006;79:390–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Michalk A, Stricker S, Becker J, et al. Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet. 2008;82:464–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hall J, Reed S, Greene G. The distal arthrogryposis. Am J Med Genet. 1982;11:185–239.

    Article  CAS  PubMed  Google Scholar 

  29. Bamshad M, Jorde L, Carey J. A revised and extended classification of the distal arthrogryposes. Am J Med Genet. 1996;65:277–81.

    Article  CAS  PubMed  Google Scholar 

  30. McMillin MJ, Below JE, Shively KM, et al. Mutations in ECEL1 cause distal arthrogryposis type 5D. Am J Hum Genet. 2013;92:150–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Potter E. Bilateral absence of ureters and kidneys: report of 50 cases. Obstet Gynecol. 1965;25:3.

    CAS  PubMed  Google Scholar 

  32. Hammond E, Donnenfeld A. Fetal akinesia. Obstet Gynecol Surv. 1995;50:240–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez J, Palacios J. Pathogenetic mechanisms of fetal akinesia deformation sequence and oligohydramnios sequence. Am J Med Genet. 1991;40:284–9.

    Article  CAS  PubMed  Google Scholar 

  34. Witt D, Hayden M, Holbrook K, et al. Restrictive dermopathy: a newly recognised autosomal recessive skin dysplasia. Am J Med Genet. 1986;24:631–48.

    Article  CAS  PubMed  Google Scholar 

  35. Navarro C, De Sandre-Giovannoli A, Bernard R, et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganisation and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet. 2004;13:2493–503.

    Article  CAS  PubMed  Google Scholar 

  36. Mau U, Kendziorra H, Kaiser P, et al. Restrictive dermopathy: report and review. Am J Med Genet. 1997;71:179–85.

    Article  CAS  PubMed  Google Scholar 

  37. Wesche W, Cutlan R, Khare V, et al. Restrictive dermopathy: report of a case and review of the literature. J Cutan Pathol. 2001;28:211–8.

    Article  CAS  PubMed  Google Scholar 

  38. Nijsten T, De Moor A, Colpaert C, et al. Restrictive dermopathy: a case report and a critical review of all hypotheses of its origin. Pediatr Dermatol. 2002;19:67–72.

    Article  CAS  PubMed  Google Scholar 

  39. Shevell M, Rosenblatt B, Silver K, et al. Congenital inflammatory myopathy. Neurology. 1990;40:1111–4.

    Article  CAS  PubMed  Google Scholar 

  40. McNeil S, Woulfe J, Ross C, et al. Congenital inflammatory myopathy: a demonstrative case and proposed diagnostic classification. Muscle Nerve. 2002;25:259–64.

    Article  PubMed  Google Scholar 

  41. Dubowitz V, Sewry CA, Oldfors A. Muscle biopsy – a practical approach. 4th ed. Saunders Elsevier, China; 2013.

    Google Scholar 

  42. Mailman M, Heinz J, Papp A, et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med. 2002;4:20–6.

    Article  CAS  PubMed  Google Scholar 

  43. Grohmann K, Schuelke M, Diers A, et al. Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nat Genet. 2001;29:75–7.

    Article  CAS  PubMed  Google Scholar 

  44. Kizilates S, Talim B, Sel K, et al. Severe lethal spinal muscular atrophy variant with arthrogryposis. Pediatr Neurol. 2005;32:201–4.

    Article  PubMed  Google Scholar 

  45. Darras B. Neuromuscular disorders in the newborn. Clin Perinatol. 1997;24:827–44.

    Article  CAS  PubMed  Google Scholar 

  46. Machuca-Tzili L, Brook D, Hilton-Jones D. Clinical and molecular aspects of the myotonic dystrophies: a review. Muscle Nerve. 2005;32:1–18.

    Article  CAS  PubMed  Google Scholar 

  47. Brunner H, Bruggenwirth H, Nillesen W, et al. Influence of sex of the transmitting parent as well as parental allele size of the CTG expansion in myotonic dystrophy (DM). Am J Hum Genet. 1993;53:1016–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Farkas E, Tome F, Fardeau M, et al. Histochemical and ultrastructural study of muscle biopsies in 3 cases of dystrophia myotonica in the newborn child. J Neurol Sci. 1974;21:273–88.

    Article  CAS  PubMed  Google Scholar 

  49. Redman J, Fenwick R, Fu Y, et al. Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in offspring. JAMA. 1993;269:1960–5.

    Article  CAS  PubMed  Google Scholar 

  50. Riggs J, Bodensteiner J, Schochet S. Congenital myopathies/dystrophies. Neurol Clin N Am. 2003;21:779–94.

    Article  Google Scholar 

  51. Lammens M, Moerman P, Fryns J, et al. Fetal akinesia sequence caused by nemaline myopathy. Neuropediatrics. 1997;28:116–9.

    Article  CAS  PubMed  Google Scholar 

  52. North KN, Wang CH, Clarke N, et al. Approach to the congenital myopathies. Neuromuscul Disord. 2014;24:97–116.

    Article  PubMed  Google Scholar 

  53. Jungbluth H, Sewry C, Muntoni F. What’s new in neuromuscular disorders? The congenital myopathies. Eur J Paedaitr Neurol. 2003;7:23–30.

    Article  Google Scholar 

  54. Spiro A, Shy G, Gonatas N. Myotubular myopathy. Arch Neurol. 1966;14:1–14.

    Article  CAS  PubMed  Google Scholar 

  55. Clarke NF, North KN. Congenital fibre type disproportion – 30 years on. J Neuropathol Exp Neurol. 2003;62:977–89.

    Article  PubMed  Google Scholar 

  56. Bonnemann CG, Wang CH, Quijano-Roy S, et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord. 2014;24:289–311.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kirschner J. Congenital muscular dystrophies. Handb Clin Neurol. 2013;113:1377–85.

    Article  PubMed  Google Scholar 

  58. Muntoni F, Voit T. The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord. 2004;14:635–49.

    Article  PubMed  Google Scholar 

  59. Sunada Y, Edgar T, Lotz B, et al. Merosin-negative congenital muscular dystrophy associated with extensive brain abnormalities. Neurology. 1995;45:2084–9.

    Article  CAS  PubMed  Google Scholar 

  60. Jimenez-Mallebrera C, Brown S, Sewry C, et al. Congenital muscular dystrophy: molecular and cellular aspects. Cell Mol Life Sci. 2005;62:809–23.

    Article  CAS  PubMed  Google Scholar 

  61. Brueton L, Huson S, Cox P, et al. Asymptomatic maternal myasthenia as a cause of the Pena-Shokeir phenotype. Am J Med Genet. 2000;92:1–6.

    Article  CAS  PubMed  Google Scholar 

  62. Engel A. 73rd ENMC international workshop: congenital myasthenic syndromes 22–23 October 199, Naarden, The Netherlands. Neuromuscul Disord. 2001;11:315–32.

    Article  CAS  PubMed  Google Scholar 

  63. Engel AG, Shen XM, Selcen D, et al. What have we learned from the congenital myasthenic syndromes? J Mol Neurosci. 2010;40:143–53.

    Article  CAS  PubMed  Google Scholar 

  64. Eymard B, Hantai D, Estournet B. Congenital myasthenic syndromes. Handb Clin Neurol. 2013;113:1469–80.

    Article  PubMed  Google Scholar 

  65. Chaouch A, Beeson D, Hantai D, et al. 186th ENMC International workshop: congenital myasthenic syndromes 24–26 June 2011, Naarden, The Netherlands. Neuromuscul Disord. 2012;22:566–76.

    Article  PubMed  Google Scholar 

  66. Tein I. Neonatal metabolic myopathies. Semin Perinatol. 1999;23:125–51.

    Article  CAS  PubMed  Google Scholar 

  67. Ravenscroft G, Thompson EM, Todd EJ, et al. Whole exome sequencing in foetal akinesia expands the genotype-phenotype spectrum of GBE1 glycogen storage disease mutations. Neuromuscul Disord. 2013;23:165–9.

    Article  PubMed  Google Scholar 

  68. Vladutiu G. Metabolic myopathies. The molecular diagnosis of metabolic myopathies. Neurol Clin. 2000;18:53–104.

    Article  CAS  PubMed  Google Scholar 

  69. Dyck P. Peripheral nerves. In: Graham D, Lantos P, editors. Greenfield’s neuropathology. 7th ed. New York: Arnold; 2002.

    Google Scholar 

  70. Landrieu P, Baets J, De Jonghe P. Hereditary motor-sensory, motor and sensory neuropathies in childhood. Handb Clin Neurol. 2013;113:1414–32.

    Google Scholar 

  71. Dubourg O, Azzedine H, Verny C, et al. Autosomal recessive forms of demyelinating Charcot-Marie-Tooth disease. Neuromolecular Med. 2006;8:75–86.

    Article  CAS  PubMed  Google Scholar 

  72. Scott K, Kothari K. Hereditary neuropathies. Semin Neurol. 2005;25:174–84.

    Article  PubMed  Google Scholar 

  73. Ryan M, Ouvrier R. Hereditary peripheral neuropathies of childhood. Curr Opin Neurol. 2005;18:105–10.

    Article  CAS  PubMed  Google Scholar 

  74. Klein C. Pathology and molecular genetics of inherited neuropathy. J Neurol Sci. 2004;220:141–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Manton MBBS, BMedSci, FRCPA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Manton, N.D. (2015). Skeletal Muscle and Peripheral Nerves. In: Khong, T.Y., Malcomson, R.D.G. (eds) Keeling’s Fetal and Neonatal Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-19207-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19207-9_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19206-2

  • Online ISBN: 978-3-319-19207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics