Skip to main content

Prematurity

  • Chapter
  • 2306 Accesses

Abstract

Preterm birth is defined as delivery less than 37 weeks’ gestational age. The rate of preterm birth varies around the world and differs between developed and developing countries. It is 12–13 % in the United States of America (USA), 5–9 % in Europe, 9 % in Australia, and as high as 18 % in some countries in Africa. In developed countries the increased rate of preterm birth has been attributed to the changing demographics of childbearing. The mean age of childbearing has increased over the years with the average age of primiparous women in Australia now 28.3 years of age and the percentage of first-time mothers over 35 years of age in the USA now 4 %. Delayed childbearing is associated with a number of risk factors including preeclampsia and gestational diabetes. Infertility with the resultant use of in vitro fertilization methods and consequent twins/triplets are also significant issues. Another major risk factor for preterm birth is maternal obesity, which is increasing in both developed and developing countries. Complications of maternal obesity include maternal and fetal death, preeclampsia, gestational diabetes, and congenital abnormalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lantos JD, Lauderdale DS. What is behind the rising rates of preterm birth in the United States? Rambam Maimonides Med J. 2011;2:e0065.

    PubMed  PubMed Central  Google Scholar 

  2. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379:2162–72.

    PubMed  Google Scholar 

  3. Li Z, Zeki R, Hilder L, Sullivan EA, Australian Institute of Health and Welfare. Australia’s mothers and babies. 2011. http://www.aihw.gov.au/WorkArea/DownloadAsset.aspx?id=60129545698. Last accessed 9th July 2014.

  4. Matthews TJ, Hamilton BE. Delayed childbearing: more women are having their first child later in life. NCHS Data Brief. 2009;(21):1–8.

    Google Scholar 

  5. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303:235–41.

    CAS  PubMed  Google Scholar 

  6. Popkin BM, Slining MM. New dynamics in global obesity facing low- and middle-income countries. Obes Rev. 2013;14:11–20.

    PubMed  PubMed Central  Google Scholar 

  7. Catalano PM, Ehrenberg HM. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG. 2006;113:1126–33.

    CAS  PubMed  Google Scholar 

  8. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379:2151–61.

    PubMed  Google Scholar 

  9. Health, United States. 2013. www.cdc.gov/nchs/data/hus/hus13.pdf. Last accessed 9th July 2014.

  10. Childhood, Infant and Perinatal Mortality in England and Wales. 2012. Office for National Statistics. www.ons.gov.uk/ons/dcp171778_350853.pdf. Last accessed 9th July 2014.

  11. Oestergaard MZ, Inoue M, Yoshida S, Mahanani WR, Gore FM, Cousesn S, et al. Neonatal mortality levels for 193 countries in 2009 with trends since 1990: a systematic analysis of progress, projections, and priorities. PLoS Med. 2011;8:e1001080.

    PubMed  PubMed Central  Google Scholar 

  12. Katz J, Lee ACC, Kozuki N, Lawn JE, Cousens S, Blencowe H, et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet. 2013;382:417–25.

    PubMed  PubMed Central  Google Scholar 

  13. Mohangoo AD, Buitendijk SE, Szamotulska K, Chalmers J, Irgens LM, Bolumar F, et al. Gestational age patterns of fetal and neonatal mortality in Europe: results from the euro-peristat project. PLoS One. 2011;6:e24727.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Callaghan WM, MacDorman MF, Rasmussen SA, Qin C, Lackritz EM. The contribution of preterm birth to infant mortality rates in the United States. Pediatrics. 2006;118:1566–73.

    PubMed  Google Scholar 

  15. Word Health Organisation and Unicef. Countdown to 2015 decade report (2000–2010): taking stock of maternal, newborn and child survival. 2010. http://www.countdown2015mnch.org/documents/2010Report/2010_ReportAndProfiles.pdf. Last accessed 9th July 2014.

  16. Victoria’s Mothers and Babies. Victoria’s Maternal, Perinatal, Child and Adolescent Mortality. The consultative council on obstetric and paediatric mortality and morbidity. 2010/2011. http://docs.health.vic.gov.au/docs/doc/E7B8F6942838375ACA257CFD0003DA74/$FILE/CCOPMM%20Report%202010%20and%202011%20final%20version-v02.pdf. Last accessed 9th July 2014.

  17. Maternal and Perinatal Morality and Morbidity in Queensland. Queensland Maternal and Perinatal Quality Council Report. 2011. http://www.health.qld.gov.au/caru/networks/docs/qmpqc-report-2011.pdf. Last accessed 9th July 2014.

  18. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.

    PubMed  PubMed Central  Google Scholar 

  19. Romero R, Espinoza J, Kusanovic J, Gotsch F, Hassan S, Erez O, et al. The preterm parturition syndrome. BJOG. 2006;113:17–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldenberg RL, Goepfert AR, Ramsey PS. Biochemical markers for the prediction of preterm birth. Am J Obstet Gynecol. 2005;192:S36–46.

    CAS  PubMed  Google Scholar 

  21. Fiscella K. Race, perinatal outcome, and amniotic infection. Obstet Gynecol Surv. 1996;175:1317–24.

    Google Scholar 

  22. Brett KM, Strogatz DS, Savitz DA. Employment, job strain, and preterm delivery among women in north Carolina. Am J Public Health. 1997;87:199–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith LK, Draper ES, Manktelow BN, Field DJ, Dorlong JS. Socioeconomic inequalities in very preterm birth rates. Arch Dis Child Fetal Neonatal Ed. 2007;92:F11–4.

    CAS  PubMed  Google Scholar 

  24. Thompson JM, Irgens LM, Rasmussen S, Dalveit AK. Secular trends in socio-economic status and the implications for preterm birth. Perinat Epidemiol. 2006;20:182–7.

    Google Scholar 

  25. Hendler I, Goldenberg RL, Mercer BM, Iams JD, Meis PJ, Moawad AH, et al. The preterm prediction study: association between maternal body mass index and spontaneous indicated preterm birth. Am J Obstet Gynecol. 2005;192:882–6.

    PubMed  Google Scholar 

  26. Ehrenberg HM, Iams JD, Goldenberg RL, Newmand RB, Weiner SJ, Sibai BM, et al. Maternal obesity, uterine activity, and the risk of spontaneous preterm birth. Obstet Gynecol. 2009;113:48–52.

    PubMed  PubMed Central  Google Scholar 

  27. Christian P. Micronutrient and reproductive health issues; an international perspective. J Nutr. 2003;133:1969S–73.

    PubMed  Google Scholar 

  28. Ribot B, Aranda N, Giralt M, Romeu M, Balaguer A, Arija V. Effect of different doses of iron supplementation during pregnancy on maternal and infant health. Ann Hematol. 2013;92:221–9.

    CAS  PubMed  Google Scholar 

  29. Hancke K, Gundelach T, Hay B, Sander S, Reister F, Weiss JM. Pre-pregnancy obesity compromises obstetric and neonatal outcomes. J Perinat Med. 2014. pii: /j/jpme.ahead-of-print/jpm-2014-0069/jpm-2014-0069.xml. doi: 10.1515/jpm-2014-0069.

  30. Szegda K, Markenson G, Bertone-Johnson ER, Chasan-Taber L. Depression during pregnancy: a risk factor for adverse neonatal outcomes? A critical review of the literature. J Matern Fetal Neonatal Med. 2014;27:960–7.

    PubMed  Google Scholar 

  31. Luger TM, Suls J, Vander Weg MW. “How robust is the association between smoking and depression in adults” a meta-analysis using linear mixed-effect models. Addict Behav. 2014;39:1418–29.

    PubMed  Google Scholar 

  32. Lubman DI, Baker A. Cannabis and mental health – management in primary care. Aust Fam Physician. 2010;39:554–7.

    PubMed  Google Scholar 

  33. Goodman DJ, Wolff KB. Screening for substance abuse in women’s health: a public health imperative. J Midwifery Womens Health. 2013;58:278–87.

    PubMed  Google Scholar 

  34. Huybrechts KF, Sanghani RS, Avorn J, Urato AC. Preterm birth and antidepressant medication use during pregnancy: a systematic review and meta-analysis. PLoS One. 2014;9:e92778.

    PubMed  PubMed Central  Google Scholar 

  35. Lichtblau N, Schmidt FM, Schumann R, Kirkby KC, Himmerich H. Cytokines as biomarkers in depressive disorders: current standing and prospects. Int Rev Psychiatry. 2013;25:592–603.

    PubMed  Google Scholar 

  36. Andres RL, Day MC. Perinatal complications associated with maternal tobacco use. Semin Neonatol. 2000;5:231–41.

    CAS  PubMed  Google Scholar 

  37. Cnattinguis S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics and pregnancy outcomes. Nicotine Tob Res. 2004;6:S125–40.

    Google Scholar 

  38. Dumas A, Simmat-Durand L, Lejeune C. Pregnancy and substance use in France: a literature review. J Gynecol Obstet Biol Reprod (Paris). 2014; pii: S0368-2315(14)00142-2. doi:10.1016/j.gyn.2014.05.008.

  39. Centers for disease control and prevention morbidity and mortality weekly report. Trends in smoking before, during and after pregnancy – pregnancy risk assessment monitoring system, United States, 40 sites, 200–2010. US Department of Health and Human Services 8 Nov 2013.

    Google Scholar 

  40. Bloch M, Althabe F, Onyamboko M, Kaseba-Sata C, Castilla EE, Freire S, et al. Tobacco use and second hand smoke exposure during pregnancy: an investigative survey of women in 9 developing countries. Am J Public Health. 2008;98:1833–40.

    PubMed  PubMed Central  Google Scholar 

  41. Salihu HM, Wilson RE. Epidemiology of prenatal smoking and perinatal outcomes. Early Hum Dev. 2007;83:713–20.

    CAS  PubMed  Google Scholar 

  42. Kuczkowski KM. The effects of drug abuse on pregnancy. Curr Opin Obstet Gynecol. 2007;19:578–85.

    PubMed  Google Scholar 

  43. Fajemirokun-Odudeyi O, Sinha C, Tutty S, Pairaudeau P, Armstrong D, Phillips T, et al. Pregnancy outcome in women who use opiates. Eur J Obstet Gynecol Reprod Biol. 2006;126:170–5.

    CAS  PubMed  Google Scholar 

  44. Desai A. Marijuana use and pregnancy – prevalence, associated behaviours, and birth outcomes. Obstet Gynecol. 2014;123:46S.

    Google Scholar 

  45. Kuzcowski M. Marijuana in pregnancy. Ann Acad Med Singapore. 2004;33:336–9.

    Google Scholar 

  46. DeFranco EA, Stamilio DM, Boslaugh SE, Gross GA, Muglia LJ. A short interpregnancy interval is a risk factor for preterm birth and its recurrence. Am J Obstet Gynecol. 2007;197:264e1–6.

    Google Scholar 

  47. Kazemier BM, Buijs PE, Mignini L, Limpens J, de Groot CJ, Mol BW, et al. Impact of obstetric history on the risk of spontaneous preterm birth in singleton and multiple pregnancies: a systematic review. BJOG. 2014. doi:10.1111/1471-0528.12896.

    Article  PubMed  Google Scholar 

  48. Arbyn M, Kyrgiou M, Simeons C, Raifu AO, Koliopoulos G, Martin-Hirsch P, et al. Perinatal mortality and other severe adverse pregnancy outcomes associated with treatment of cervical intraepithelial neoplasia: meta-analysis. BMJ. 2008;337:a1284.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Krupa FG, Faltin D, Cecatti JG, Surita FG, Souza JP. Predictors of preterm birth. Int J Gynaecol Obstet. 2006;195:643–50.

    Google Scholar 

  50. Andrews WW, Copper RL, Hauth JC, Goldenberg RL, Neely C, DuBard M. Second-trimester cervical ultrasound: associations with increased risk for recurrent early, spontaneous delivery. Obstet Gynecol. 2000;95:222–6.

    CAS  PubMed  Google Scholar 

  51. Crane JM, Hutchens D. Transvaginal sonographic measurement of cervical length to predict preterm birth in asymptomatic women at increased risk: a systematic review. Ultrasound Obstet Gynecol. 2008;31:579–87.

    CAS  PubMed  Google Scholar 

  52. Leitch H, Brumbauer M, Kaider A, Egarter C, Husslein P. Cervical length and dilation of the internal os detected by vaginal ultrasonography as markers of preterm delivery: a systematic review. Am J Obstet Gynecol. 1999;181:1465–72.

    Google Scholar 

  53. Werner EF, Han CS, Pettker CM, Buhimschi CS, Copel JA, Funai EF, et al. Universal cervical-length screening to prevent preterm birth: a cost-effectiveness analysis. Ultrasound Obstet Gynecol. 2011;38:32–7.

    CAS  PubMed  Google Scholar 

  54. Conde-Agudelo A, Romero R, Nicolaides K, Chaiworapongsa T, O’Brien JM, Cetingoz E, et al. Vaginal progesterone versus cervical cerclage for the prevention of preterm birth in women with a sonographic short cervix, singleton gestation, and previous preterm birth: a systematic review and indirect comparison meta-analysis. Am J Obstet Gynecol. 2013;208:42.e1–18.

    Google Scholar 

  55. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342:1500–7.

    CAS  PubMed  Google Scholar 

  56. Russell P. Inflammatory lesions of the human placenta. 1. Clinical significance of acute chorioamnionitis. Diagn Gynecol Obstet. 1979;1:127–37.

    Google Scholar 

  57. Mueller-Heubach E, Rubenstein DN, Schwarz SS. Histologic chorioamnionitis and preterm delivery in different patient populations. Obstet Gynecol. 1990;75:622–6.

    CAS  PubMed  Google Scholar 

  58. Watts DH, Krohn MA, Hillier SL, Eschenbach DA. The association of occult amniotic fluid infection with gestational age and neonatal outcome among women in preterm labor. Obstet Gynecol. 1992;79:351–7.

    CAS  PubMed  Google Scholar 

  59. Gibbs RS, Romero R, Hillier SL, Eschenbach DA, Sweet RL. A review of premature birth and subclinical infection. Am J Obstet Gynecol. 1992;166:1515–28.

    CAS  PubMed  Google Scholar 

  60. Romero R, Sirtori M, Oyarzun E, Avila C, Mazor M, Callahan R, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989;161:817–24.

    CAS  PubMed  Google Scholar 

  61. Andrews WW, Hauth JC, Goldenberg RL, Gomez R, Romero R, Cassell GH. Amniotic fluid interleukin-6: correlation with upper genital tract microbial colonization and gestational age in women delivered following spontaneous labor versus indicated delivery. Am J Obstet Gynecol. 1995;173:606–12.

    CAS  PubMed  Google Scholar 

  62. Krohn MA, Hillier SL, Nugent RP, Cotch MF, Carey JC, Gibbs RS, et al. The genital flora of women with intraamniotic infection. J Infect Dis. 1995;171:1475–80.

    CAS  PubMed  Google Scholar 

  63. Hillier SL, Krohn MA, Cassen E, Easterling TR, Rabe LK, Eschenbach DA. The role of bacterial vaginosis and vaginal bacteria in amniotic fluid infection in women in preterm labor with intact fetal membranes. Clin Infect Dis. 1994;20:S276–8.

    Google Scholar 

  64. McDonald HM, Brocklehurst P, Gordon A. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst Rev. 2013;(1):CD000262.

    Google Scholar 

  65. Lamont RF. Can antibiotics prevent preterm birth – the pro and con debate. BJOG. 2005;112:67–73.

    PubMed  Google Scholar 

  66. Carroll SG, Papioannou S, Mtumazah IL, Philpott-Howard J, Nicolaides KH. Lower genital tract swabs in the prediction of intrauterine infection in preterm prelabour rupture of the membranes. Br J Obstet Gynaecol. 1996;103:54–9.

    CAS  Google Scholar 

  67. Goldenberg RL, Andrews WW, Goepfort AR, Faye-Petersen O, Cliver SP, Carlo WA, et al. The Alabama preterm birth study: umbilical cord blood Ureaplasma urealyticum and Mycoplasma hominis cultures in very preterm newborns. Am J Obstet Gynecol. 2008;198:43.e1–5.

    Google Scholar 

  68. Yoon BH, Romero R, Yang SH, Jun JK, Kim IO, Choi JH, Syn HC. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol. 1996;174:1433–40.

    CAS  PubMed  Google Scholar 

  69. Yoon BH, Romero R, Park JS, Kim CJ, Kim SH, Choi JH, Han TR. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol. 2000;182:675–81.

    CAS  PubMed  Google Scholar 

  70. Yoon BH, Romero R, Kim KS. A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1999;181:773–9.

    CAS  PubMed  Google Scholar 

  71. Kent A, Dahlstrom JE. Chorioamnionitis/funisitis and the development of bronchopulmonary dysplasia. J Paediatr Child Health. 2004;40:356–9.

    CAS  PubMed  Google Scholar 

  72. Kent A, Lomas F, Hurrion E, Dahlstrom JE. Antenatal steroids may reduce adverse neurological outcome following chorioamnionitis: neurodevelopmental outcome and chorioamnionitis in premature infants. J Paediatr Child Health. 2005;41:186–90.

    PubMed  Google Scholar 

  73. Goldenberg RL, Mercer BM, Meis PJ, Cooper RL, Das A, McNellis D. The preterm prediction study: fetal fibronectin testing and spontaneous preterm birth. Obstet Gynecol. 1996;87:643–8.

    CAS  PubMed  Google Scholar 

  74. Lu GC, Goldenberg RL, Cliver SP, Kreaden US, Andrews WW. Vaginal fetal fibronectin levels and spontaneous preterm birth in symptomatic women. Obstet Gynecol. 2001;97:225–8.

    CAS  PubMed  Google Scholar 

  75. Boots AB, Sanchex-Ramos L, Bowers DM, Kaunitz AM, Zamora J, Schlattmann P. The short-term prediction of preterm birth: a systematic review and diagnostic metaanalysis. Am J Obstet Gynecol. 2014;210:54e.1–10.

    Google Scholar 

  76. DeFranco EA, Lewis DF, Odibo AO. Improving the screening accuracy for preterm labor: is the combination of fetal fibronectin and cervical length in symptomatic patients a useful predictor of preterm birth? A systematic review. Am J Obstet Gynecol. 2013;208:233.e1–6.

    Google Scholar 

  77. Liong S, Di Quinzio MK, Fleming G, Permezel M, Rice GE, Georgiou HM. New biomarkers for the prediction of spontaneous preterm labour in symptomatic pregnant women: a comparison with fetal fibronectin. The ref BJOG 2015;122:370–9.

    Google Scholar 

  78. Winkvist A, Mogren I, Hogberg U. Familial patterns in birth characteristics: impact on individual and population risks. Int J Epidemiol. 1998;27:248–54.

    CAS  PubMed  Google Scholar 

  79. Porter TF, Fraser AM, Hunter CY, Ward RH, Varner MW. The risk of preterm birth across generations. Obstet Gynecol. 1997;90:63–7.

    CAS  PubMed  Google Scholar 

  80. Wilcox AJ, Skjaerven R, Lie RT. Familial patterns of preterm delivery: maternal and fetal contributions. Am J Epidemiol. 2008;167:474–9.

    PubMed  Google Scholar 

  81. Holst D, Garnier Y. Preterm birth and inflammation – the role of genetic polymorphisms. Eur J Obstet Gynecol Reprod Biol. 2008;141:3–9.

    CAS  PubMed  Google Scholar 

  82. Wu W, Clark EAS, Stoddard GJ, Watkins WS, Esplin MS, Manuck TA, et al. Effect of interleukin-6 polymorphism on risk of preterm birth within population strata: a meta-analysis. BMC Genet. 2013;14:30.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Harmon QE, Engel SM, Olshan AF, Moran T, Stuebe AM, Luo J, et al. Association of polymorphisms in natural killer cell- related genes with preterm birth. Am J Epidemiol. 2013;178:1208–18.

    PubMed  PubMed Central  Google Scholar 

  84. O’Callaghan ME, MacLennan AH, McMichael GL, Haan EA, Dekker GA. Single nucleotide polymorphism associations with preterm delivery: a case-control replication study and meta-analysis. Pediatr Res. 2013;74:433–8.

    PubMed  Google Scholar 

  85. Gomez LM, Sammel MD, Appleby DH, Elovitz MA, Baldwin DA, Jeffcoat MK, et al. Evidence of a gene-environment interaction that predisposes to spontaneous preterm birth: a role for asymptomatic bacterial vaginosis and DNA variants in genes that control the inflammatory response. Am J Obstet Gynecol. 2010;202:386.e1–6.

    Google Scholar 

  86. Jaffe S, Normand N, Jayaram A, Orfanelli T, Doulaveris G, Passos M, et al. Unique variation in genetic selection among black north American women and its potential influence on pregnancy outcome. Med Hypotheses. 2013;81:919–22.

    PubMed  Google Scholar 

  87. Keirse MJNC. The history of tocolysis. BJOG. 2003;110:94–7.

    PubMed  Google Scholar 

  88. Flenady V, Wojcieszek AM, Papatsonis DN, Stock OM, Murray L, Jardine LA, et al. Calcium channel blockers for inhibiting preterm labour and birth. Cochrane Database Syst Rev. 2014;(6):CD002255.

    Google Scholar 

  89. Vogel JP, Nardin JM, Dowswell T, West HM, Oladapo OT. Combination of tocolytic agents for inhibiting preterm labour. Cochrane Database Syst Rev. 2014;(7):CD006169.

    Google Scholar 

  90. Flenady V, Reinebrant HE, Liley HG, Tambimuttu EG, Papatsonis DN. Oxytocin receptor antagonists for inhibiting preterm labour. Cochrane Database Syst Rev. 2014;(6):CD004452.

    Google Scholar 

  91. Crowther CA, Brown J, McKinlay CJ, Middleton P. Magnesium sulphate for preventing preterm birth in threatened preterm labour. Cochrane Database Syst Rev. 2014;(8):CD001060.

    Google Scholar 

  92. Doyle LW, Crowther CA, Middleton P, Marret S, Rouse D. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev. 2009;(1):CD004661.

    Google Scholar 

  93. Nanda K, Cook LA, Gallo MF, Grimes DA. Terbutaline pump maintenance therapy after threatened preterm labour for preventing preterm birth. Cochrane Database Syst Rev. 2002;(4):CD003933.

    Google Scholar 

  94. Dodd JM, Crowther CA, Dare MR, Middleton P. Oral betamimetics for maintenance therapy after threatened preterm labour. Cochrane Database Syst Rev. 2006;(1):CD003927.

    Google Scholar 

  95. Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;(3):CD004454.

    Google Scholar 

  96. Crowther CA, McKinlay CJ, Middleton P, harding JE. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Syst Rev. 2011;(6):CD003935.

    Google Scholar 

  97. Brownfoot FC, Gagliardi DI, Bain E, Middleton P, Crowther CA. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2013;(8):CD 006764.

    Google Scholar 

  98. Lo JO, Mission JF, Caughey AB. Hypertensive disease of pregnancy and maternal mortality. Curr Opin Obstet Gynecol. 2013;2:124–32.

    Google Scholar 

  99. Hutcheon JA, Lisonkova S, Joseph KS. Epidemiology of pre-eclampsia and other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol. 2011;25:391–403.

    PubMed  Google Scholar 

  100. Zhang J, Meikle S, Trumble A. Severe maternal morbidity associated with hypertensive disorders in pregnancy in the United States. Hypertens Pregnancy. 2003;22:203–12.

    PubMed  Google Scholar 

  101. Brosens JJ, Pijnenborg R, Brosens IA. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies. Am J Obstet Gynecol. 2002;187:416–23.

    Google Scholar 

  102. Luo Z-C, An N, Xu H-R, Larante A, Audibert F, Fraser WD. The effects and mechanism of primiparity on the risk of pre-eclampsia: a systematic review. Paediatr Perinat Epidemiol. 2007;21 (Suppl 1):36–45.

    PubMed  Google Scholar 

  103. Odegård RA, Vatten LJ, Nilsen ST, Salvesen KA, Austgulen R. Risk factors and clinical manifestation of pre-eclampsia. BJOG. 2000;107:1410–6.

    PubMed  Google Scholar 

  104. Mostello D, Kallogjeri D, Tungsiripat R, Leet T. Recurrence of preeclampsia: effects of gestational age at delivery of the first pregnancy, body mass index, paternity, and interval between births. Am J Obstet Gynecol. 2008;199:e1–7.

    Google Scholar 

  105. Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330:565.

    PubMed  PubMed Central  Google Scholar 

  106. Bodnar LM, Ness RB, Harger GF, Roberts JM. Inflammation and triglycerides partially mediate the effect of prepregnancy body mass index on the risk of preeclampsia. Am J Epidemiol. 2005;162:1198–206.

    PubMed  Google Scholar 

  107. Trogstad L, Magnus P, Stoltenberg C. Pre-eclampsia: risk factors and causal models. Best Pract Res Clin Obstet Gynaecol. 2011;25:329–42.

    PubMed  Google Scholar 

  108. England L, Zhang J. Smoking and risk of preeclampsia: a systematic review. Front Biosci. 2007;12:2471–83.

    CAS  PubMed  Google Scholar 

  109. Sibai BM, Hauth J, Caritis S, Lindheimer MD, MacPherson C, Klebanoff M, et al. Hypertensive disorders in twin versus singleton pregnancies. Am J Obstet Gynecol. 2000;182:938–42.

    CAS  PubMed  Google Scholar 

  110. Bdolah Y, Lam C, Rajakumar A, Shivalingappa V, Mutter W, Sachs BP, et al. Twin pregnancy and the risk of preeclampsia: bigger placenta or relative ischemia? Am J Obstet Gynecol. 2008;198:428.e1–6.

    Google Scholar 

  111. Sibai BM, Ewell M, Levine RJ, Klebanoff MA, Esterlitz J, Catalano PM, et al. Risk factors associated with preeclampsia in healthy nulliparous women. Am J Obstet Gynecol. 1997;177:1003–10.

    CAS  PubMed  Google Scholar 

  112. Knuist M, Bonsel GJ, Zondervan HA, Treffers PE. Risk factors for preeclampsia in nulliparous women in distinct ethnic groups: a prospective cohort study. Obstet Gynecol. 1998;92:174–8.

    CAS  PubMed  Google Scholar 

  113. Stampalija T, Gyte GM, Alfirevic Z. Utero-placental Doppler ultrasound for improving pregnancy outcome. Cochrane Database Syst Rev. 2010;(9):CD008363.

    Google Scholar 

  114. Duley L, Henderson-Smart DJ, Meher S, King JF. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2007;(2):CD004659.

    Google Scholar 

  115. Henderson JT, Whitlock EP, O’Connor E, Senger CA, Thompson JH, Rowland MG. Low-dose aspiring for prevention of morbidity and mortality from preeclampsia: a systematic evidence review for the U.S. Preventive services task force. Ann Intern Med. 2014;160:695–703.

    PubMed  Google Scholar 

  116. Thangaratinam S, Langenveld J, Mol BW, Khan KS. Prediction and primary prevention of pre-eclampsia. Best Pract Res Clin Obstet Gynaecol. 2011;25:419–33.

    PubMed  Google Scholar 

  117. Slattery MM, Geary M, Morrison JJ. Obstetric antecedents for preterm delivery. J Perinat Med. 2008;36:306–9.

    PubMed  Google Scholar 

  118. Lawrence JM, Contreras R, Chen W, Sacks DA. Trends in the prevalence of pre-existing diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999–2005. Diabetes Care. 2008;31:899–904.

    PubMed  Google Scholar 

  119. Ballas J, Moore TR, Ramos GA. Management of diabetes in pregnancy. Curr Diab Rep. 2012;12:33–42.

    CAS  PubMed  Google Scholar 

  120. Gizzo S, Patrelli TS, Rossanese M, Noventa M, et al. An update on diabetic women obstetrical outcomes linked to preconception and pregnancy glycemic profile: a systematic literature review. Sci World J. 2013:254901.

    Google Scholar 

  121. Murphy HR, Steel SA, Roland JM, Morris D, Ball V, Campbell PJ, et al. Obstetric and perinatal outcomes in pregnancies complicated by Type 1 and Type 2 diabetes: influences of glycaemic control, obesity and social disadvantage. Diabet Med. 2011;28:1060–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Falavigna M, Schmidt MI, Trujillo J, Alves LF, Wendland ER, Torloni MR, et al. Effectiveness of gestational diabetes treatment: a systematic review with quality of evidence assessment. Diabetes Res Clin Pract. 2012;98:396–405.

    PubMed  Google Scholar 

  123. Poolsup N, Suksomboon N, Amin M. Effect of treatment of gestational diabetes mellitus: a systematic review and meta-analysis. PLoS ONE. 2014;9:e92485.

    PubMed  PubMed Central  Google Scholar 

  124. Groom KM, Poppe KK, North RA, McCowan LM. Small-for-gestational-age infants classified by customized or population birthweight centiles: impact of gestational age at delivery. Am J Obstet Gynecol. 2007;197:239.e1.

    Google Scholar 

  125. Bukowski R, Hansen NI, Willinger M, Reddy UM, Parker CB, Pinar H, et al. Fetal growth and risk of stillbirth: a population-based case-control study. PLoS Med. 2014;11:e1001633.

    PubMed  PubMed Central  Google Scholar 

  126. Maternal and perinatal mortality and morbidity in Queensland. Queensland Maternal and Perinatal Quality Council Report. 2013. http://www.health.qld.gov.au/caru/networks/docs/qmoqc-report-2013-full.pdf. Last accessed 1.10.14.

  127. Perinatal Mortality in the ACT 2006–2010. ACT Health Directorate Public Report. http://health.act.gov.au/health-services/population-health/health-improvement/epidemiology-branch/epidemiology-publications-health-series/perinatal-mortality-in-the-act-2006-2010. Last accessed 1.10.14.

  128. Royal College of Obstetricians and Gynaecologists. Greentop Guideline No. 31. The investigation and management of the small-for-gestational-age fetus. 2014. https://www.rcog.org.uk/globalassets/documents/guidelines/gtg31sga23012013.pdf. Last accessed 1.10.2014.

  129. Lee J, Rajadurai VS, Tan KW. Blood pressure standards for very low birthweight infants during the first day of life. Arch Dis Child Fetal Neonatal Ed. 1999;81:F168–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zubrow AB, Hulman S, Kushner H, Falkner B. Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicenter study. Philadelphia Neonatal Blood Pressure Study Group. J Perinatol. 1995;15:470–9.

    CAS  PubMed  Google Scholar 

  131. Kent AL, Meskell S, Falk MC, Shadbolt B. Normative blood pressure data in non-ventilated premature neonates from 28–36 weeks gestation. Pediatr Nephrol. 2009;24:141–6.

    PubMed  Google Scholar 

  132. Bada HS, Korones SB, Perry EH, Arheart KL, Ray JD, Pourcyrous M, et al. Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J Pediatr. 1990;117:607–14.

    CAS  PubMed  Google Scholar 

  133. Al Tawil KI, El Mahdy HS, Al Rifai MT, Tamim HM, Ahmed IA, Al Saif SA. Risk factors for isolated periventricular leukomalacia. Pediatr Neurol. 2012;46:149–53.

    PubMed  Google Scholar 

  134. Goldberg RN, Chung D, Goldman SL, Bancalari E. The association of rapid volume expansion and intraventricular hemorrhage in the preterm infant. J Pediatr. 1980;96:1060–3.

    CAS  PubMed  Google Scholar 

  135. Osborn DA, Evans N. Early colume expansion for prevention of morbidity and mortality in very preterm infants. Cochrane Database Syt Rev. 2004;(2):CD002055.

    Google Scholar 

  136. Subhedar NV, Shaw NJ. Dopamine versus dobuatmine for hypotensive preterm infants. Cochrane Database Syst Rev. 2003;(3):CD001242.

    Google Scholar 

  137. Ibrahim H, Sinha IP, Subhedar NV. Corticosteroids for treating hypotension in preterm infants. Cochrane Database Syst Rev. 2011;(12):CD003662.

    Google Scholar 

  138. Dempsey EM, Barrington KJ, Marlow N, O’Donnell CP, Miletin J, Naulaers G, et al. Management of hypotension in preterm infants (The HIP Trial): a randomised controlled trial of hypotension management in extremely low gestational age newborns. Neonatology. 2014;105:275–81.

    CAS  PubMed  Google Scholar 

  139. Clyman RI. The role of patent ductus arteriosus and its treatments in the development of bronchopulmonary dysplasia. Semin Perinatol. 2013;37:102–7.

    PubMed  PubMed Central  Google Scholar 

  140. Hammerman C, Bin-Nun A, Kaplan M. Managing the patent ductus arteriosus in the premature neonate: a new look at what we thought we knew. Semin Perinatol. 2012;36:130–8.

    PubMed  Google Scholar 

  141. Van Overmeire B, Chemtob S. The pharmacologic closure of the patent ductus arteriosus. Semin Fetal Neonatal Med. 2005;10:177–84.

    PubMed  Google Scholar 

  142. Clyman RI, Couto J, Murphy GM. Patent ductus arteriosus: are current neonatal treatment options better or worse than no treatment at all? Semin Perinatol. 2012;36:123–9.

    PubMed  PubMed Central  Google Scholar 

  143. Bose CL, Laughon MM. Patent ductus arteriosus: lack of evidence for common treatments. Arch Dis Child Fetal Neonatal Ed. 2007;92:F498–502.

    PubMed  PubMed Central  Google Scholar 

  144. Ohlsson A, Walia R, Shah SS. Ibuprofen for the treatment of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2013;(4):CD003481.

    Google Scholar 

  145. Kent AL, Koina ME, Gubhaju L, Cullen-McEwen LA, Bertram JF, Lynnhtun J, et al. Indomethacin administered early in the postnatal period results in reduced glomerular number in the adult rat. Am J Physiol Renal Physiol. 2014;307:F1105–10. pii: ajprenal.00328.2014. Epub ahead of print.

    Google Scholar 

  146. Hammerman C, Bin-Nun A, Markovitch E, Schimmel MS, Kaplan M, Fink D. Ductal closure with paracetamol: a surprising new approach to patent ductus arteriosus treatment. Pediatrics. 2011;128:e1618–21.

    PubMed  Google Scholar 

  147. Oncel MY, Yurttutan S, Degirmencioglu H, Uras N, Altug N, Erdeve O, et al. Intravenous paracetamol treatment in the management of patent ductus arteriosus in extremely low birth weight infants. Neonatology. 2013;103:166–9.

    CAS  PubMed  Google Scholar 

  148. Yurttutan S, Oncel MY, Arayicı S, Uras N, Altug N, Erdeve O, et al. A different first choice drug in the medical management of patent ductus arteriosus: oral paracetamol. J Matern-Fetal Neonatal Med. 2013;26:825–7.

    CAS  PubMed  Google Scholar 

  149. Oncel MY, Yurttutan S, Uras N, Altug N, Ozdemir R, Ekmen S, et al. An alternative drug (paracetamol) in the management of patent ductus arteriosus in ibuprofen-resistant or contraindicated preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013;98:F94.

    PubMed  Google Scholar 

  150. Allegaert K, Anderson B, Simons S, van Overmeire B. Paracetamol to induce ductus arteriosus closure: is it valid? Arch Dis Child. 2013;98:462–6.

    PubMed  Google Scholar 

  151. Malvuya MN, Ohlsson A, Shah SS. Surgical versus medical treatment with cyclooxygenase inhibitors for sympotamitc patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2013;(3):CD003951.

    Google Scholar 

  152. Jhaveri N, Moon-Grady A, Clyman RI. Early surgical ligation versus a conservative approach for management of patent ductus arteriosus that fails to close after indomethacin treatment. J Pediatr. 2010;157:381–7e.1.

    PubMed  PubMed Central  Google Scholar 

  153. Evans N. Preterm patent ductus arteriosus: should we treat it? J Paediatr Child Health. 2012;48:753–8.

    PubMed  Google Scholar 

  154. McNamara PJ, Stewart L, Shivananda SP, Stephens D, Sehgal A. Patent ductus arteriosus ligation is associated with impaired left ventricular systolic performance in premature infants weighing less than 100g. J Thorac Cardiovasc Surg. 2010;140:150–7.

    PubMed  Google Scholar 

  155. Noori S, Friedlich P, Seri I, Wong P. Changes in myocardial function and haemodynamics after ligation of the ductus arteriosus in preterm infants. J Pediatr. 2007;150:597–602.

    PubMed  Google Scholar 

  156. Kabra NS, Schmidt B, Roberts RS, Doyle LW, Papile L, Fanaroff A, et al. Neurosensory impairment after surgical closure of patent ductus arteriosus in extremely low birth weight infants: results from the trial of indomethacin prophylaxis in preterms. J Pediatr. 2007;150:229–34e1.

    CAS  PubMed  Google Scholar 

  157. Schmidt B, Davis P, Moddemann D, Ohlsson A, Roberts RS, Saigal S, et al. Long term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med. 2001;344:1966–72.

    CAS  PubMed  Google Scholar 

  158. Sehgal A, McNamara PJ. The ductus arteriosus: a refined approach! Semin Perinatol. 2012;36:105–13.

    PubMed  Google Scholar 

  159. Kluckow M, Jeffery M, Gill A, Evans N. A randomised placebo-controlled trial of early treatment of the patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed. 2014;99:F99–104.

    PubMed  Google Scholar 

  160. Gruenwald P. Surface tension as a factor in the resistance of neonatal lungs to aeration. Am J Obstet Gynecol. 1947;53:996–1007.

    CAS  PubMed  Google Scholar 

  161. Pattle RE. Properties, function and origin of the alveolar lining layer. Nature. 1995;175:1125–6.

    Google Scholar 

  162. Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child. 1959;97:517–23.

    CAS  Google Scholar 

  163. Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline membrane disease. Lancet. 1980;1:55–9.

    CAS  PubMed  Google Scholar 

  164. Gitlin JD, Soll RF, Parad RB, Horbar JD, Feldman HA, Lucey JF, et al. Randomized controlled trial of exogenous surfactant for the treatment of hyaline membrane disease. Pediatrics. 1987;79:31–7.

    CAS  PubMed  Google Scholar 

  165. DeLemos RA, Shermeta DW, Knelson JH, Kotas R, Avery ME. Acceleration of appearance of pulmonary surfactant in the fetal lamb by administration of corticosteroids. Am Rev Respir Dis. 1970;102:459–61.

    CAS  PubMed  Google Scholar 

  166. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50:515–25.

    CAS  PubMed  Google Scholar 

  167. Hamvas A. Inherited surfactant protein-B deficiency and surfactant protein-C associated disease: clinical features and evaluation. Semin Perinatol. 2006;30:316–26.

    PubMed  Google Scholar 

  168. Stevens TP, Harrington EW, Blennow M, Soll RF. Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. 2007;(4):CD003063.

    Google Scholar 

  169. Martin RJ, Fanaroff AA. The preterm lung and airway: past, present and future. Pediatr Neonatol. 2013;54:228–34.

    PubMed  Google Scholar 

  170. Greenough A, Bhojnagarwala B. Causes and management of pulmonary air leaks. Paediatr Child Health. 2012;22:523–7.

    Google Scholar 

  171. Herring WH. Five causes of respiratory distress in the newborn. http://www.learningradiology.com/lectures/chestlectures/5%20NB%20chest%20dzs%202012/5%20NB%20Lung%20Diseases-2012/5%20NB%20Lung%20Diseases-2012.html)

  172. Greenhough A, Roberton NRC. Morbidity and survival in neonates ventilated for respiratory distress. Br Med J. 1985;290:597–600.

    Google Scholar 

  173. Sarkar S, Bhagat I, Dechert R, Schumacher RE, Donn SM. Severe intraventricular hemorrhage in preterm infants: comparison of risk factors and short-term neonatal morbidities between grade 3 and grade 4 intraventricular hemorrhage. Am J Perinatol. 2009;26: 419–24.

    PubMed  Google Scholar 

  174. Northway Jr WH, Rosan RC, Porter DY. Pulmonary disease following respiratory therapy of hyaline membrane disease: bronchopulmonary dysplasia. N Engl J Med. 1967;276:357–68.

    PubMed  Google Scholar 

  175. Jobe AH. The new BPD: an arrest of lung development. Pediatr Res. 1999;46:641–3.

    CAS  PubMed  Google Scholar 

  176. Laughon M, Allred EN, Nose C, O’Shea TM, Van Marter LJ, Ehrenkranz RA, et al. Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants. Pediatrics. 2009;123:1124–31.

    PubMed  Google Scholar 

  177. Carlo WA, McDonald SA, Fanaroff AA, Vohr BR, Stoll BJ, Ehrenkranz RA, et al. Association of antenatal corticosteroids with mortality and neurodevelopmental outcomes among infants born at 22 to 25 weeks gestation. JAMA. 2011;306:2348–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics. 2009;123:1314–9.

    PubMed  Google Scholar 

  179. Toce SS, Farrell PM, Leavitt LA, Samuels DP, Edwards DK. Clinical and roentgenographic scoring systems for assessing bronchopulmonary dysplasia. Am J Dis Child. 1984;138:581–5.

    CAS  PubMed  Google Scholar 

  180. Wheeler KI, Klingenberg C, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation for preterm infants: a systematic review and meta-analysis. Neonatology. 2011;100:219–27.

    PubMed  Google Scholar 

  181. Tropea K, Christou H. Current pharmacologic approaches for prevention and treatment of bronchopulmonary dysplasia. Int J Pediatr. 2012;2012:598606. doi:10.1155/2012/598606.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Brion LP, Primhak RA. Intravenous or enteral loop diuretics for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev. 2011;(9):CD001453.

    Google Scholar 

  183. Brion LP, Primhak RA, Yong W. Aerosolized diuretics for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev. 2006;(3):CD001694.

    Google Scholar 

  184. Halliday HL, Ehrenkranz RA, Doyle LW. Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2014;(5):CD001146.

    Google Scholar 

  185. Halliday HL, Ehrenkranz RA, Doyle LW. Late (>7 days) postnatal corticosteroids for chronic lungdisease in preterm infants. Cochrane Database Syst Rev. 2014;(5):CD001145.

    Google Scholar 

  186. Watterberg KL. Policy statement–postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia. Pediatrics. 2010;126:800–8.

    PubMed  Google Scholar 

  187. Shah SS, Ohlsson A, Halliday H, Shah VS. Inhaled versus systemic corticosteroids - for the treatment of chronic lung disease in ventilated very low birth weight preterm infants. Cochrane Database Syst Rev. 2012;(5):CD002058.

    Google Scholar 

  188. Shah SS, Ohlsson A, Halliday H, Shah VS. Inhaled versus systemic corticosteroids for preventing chronic lung disease in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2012;(5):CD002057.

    Google Scholar 

  189. Ghanta S. An update on pharmacologic approaches to bronchopulmonary dysplasia. Semin Perinatol. 2013;37:115–23.

    PubMed  PubMed Central  Google Scholar 

  190. O’Reilly M, Thebaud B. The promise of stem cells in bronchopulmonary dysplasia. Semin Perinatol. 2013;37:79–84.

    PubMed  Google Scholar 

  191. Embleton NE, Pang N, Cooke RJ. Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics. 2001;107:270–3.

    CAS  PubMed  Google Scholar 

  192. American Academy of Pediatrics Committee on Nutrition. Nutritional needs of low-birth weight infants. Pediatrics. 1985;75:976–86.

    Google Scholar 

  193. De Curtis M, Rigo J. The nutrition of preterm infants. Early Hum Dev. 2012;88:55–7.

    Google Scholar 

  194. Tudehope D, Fewtrell M, Kashyap S, Udaeta E. Nutritional needs of the micropreterm infant. J Pediatr. 2013;162:S72–80.

    CAS  PubMed  Google Scholar 

  195. Agostini C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50:85–91.

    Google Scholar 

  196. Francescato G, Mosca F, Agosti M. Update on lipid and protein intakes in the critical newborn. J Matern Fetal Neonatal Med. 2012;25:60–2.

    PubMed  Google Scholar 

  197. Thureen PJ, Melara D, Fennessey PV, Hay Jr WW. Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr Res. 2003;53:24–32.

    CAS  PubMed  Google Scholar 

  198. Simmer K. Aggressive nutrition for preterm infants: benefits and risks. Early Hum Dev. 2007;83:631–4.

    CAS  PubMed  Google Scholar 

  199. Stephens BE, Walden RV, Gargus RA, Tucker R, McKinley L, Mance M, et al. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics. 2009;123:1337–43.

    PubMed  Google Scholar 

  200. Carlson SE, Werkman SH, Rhodes PG, Tolley EA. Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. Am J Clin Nutr. 1993;58:35–42.

    CAS  PubMed  Google Scholar 

  201. Makrides M, Gibson RA, McPhee AJ, Collins CT, Davis PG, Doyle LW, et al. Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: a randomised controlled trial. JAMA. 2009;301:175–82.

    CAS  PubMed  Google Scholar 

  202. Drenckpohl D, McConnell C, Gaffney S, Niehaus M, Macwan KS. Randomised trial of very low birthweight infants receiving higher rates of infusion of intravenous fat emulsions during the first week of life. Pediatrics. 2008;122:743–51.

    PubMed  Google Scholar 

  203. Sparks JW. Human intrauterine growth and nutrient accretion. Semin Perinatol. 1984;8:74–93.

    CAS  PubMed  Google Scholar 

  204. Weiler HA, Wang Z, Atkinson SA. Dexamethasone treatment impairs calcium regulation and reduces bone mineralization in infant pigs. Am J Clin Nutr. 1995;61:805–11.

    CAS  PubMed  Google Scholar 

  205. Zanardo V, Dani C, Trevisanuto D, Meneghetti S, Guglielmi A, Zacchello G, et al. Methylxanthines increase renal calcium excretion in preterm infants. Biol Neonate. 1995;68:169–74.

    CAS  Google Scholar 

  206. Venkataraman PS, Han BK, Tsang RC, Daugherty CC. Secondary hyperparathyroidism and bone disease in infants receiving long-term furosemide therapy. Am J Dis Child. 1983;137:1157–61.

    CAS  PubMed  Google Scholar 

  207. Takada M, Shimada M, Hosono S, Tauchi M, Minato M, Takahashi S, et al. Trace elements and mineral requirements for very low birth weight infants in rickets of prematurity. Early Hum Dev. 1992;29:333–8.

    CAS  PubMed  Google Scholar 

  208. Harrison CM, Gibson AT. Osteopenia in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013;98:F272–5.

    PubMed  Google Scholar 

  209. Visser F, Sprij AJ, Brus F. The validity of biochemical markers in metabolic bone disease in preterm infants: a systematic review. Acta Paediatr. 2012;101:562–8.

    CAS  PubMed  Google Scholar 

  210. Morgan JA, Young L, McGuire W. Pathogenesis and prevention of necrotizing enterocolitis. Curr Opin Infect Dis. 2011;24:183–9.

    PubMed  Google Scholar 

  211. Fitzgibbons SC, Ching Y, Yu D, Carpenter J, Kenny M, Weldon C, et al. Mortality of necrotizing enterocolitis expressed by birth weight categories. J Pediatr Surg. 2009;44:1072–5.

    PubMed  Google Scholar 

  212. Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364:255–64.

    CAS  PubMed  Google Scholar 

  213. Hentschel J, de Veer I, Gastmeier P, Ruden H, Obladen M. Neonatal nosocomial infection surveillance: incidences by site and cluster of necrotizing enterocolitis. Infection. 1999;27:2340238.

    Google Scholar 

  214. Boccia D, Stolfi I, Lana S, Moro ML. Nosocomial necrotizing enterocolitis outbreaks: epidemiology and control measures. Eur J Pediatr. 2001;160:385–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Neu J, Mshvildadze M, Mai V. A roadmap for understanding and preventing necrotizing enterocolitis. Curr Gastroenterol Rep. 2008;10:450–7.

    PubMed  Google Scholar 

  216. Luig M, Lui K, NSW ACT NICUS Group. Epidemiology of necrotizing enterocolitis – part II: risks and susceptibility of premature infants during the surfactant era: a regional study. J Paediatr Child Health. 2005;41:174–9.

    PubMed  Google Scholar 

  217. Downard CD, Renaud E, St Peter SD, Abdullah F, Islam S, Saito JM, et al. Treatment of necrotizing enterocolitis: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg. 2012;47:2111–22.

    PubMed  Google Scholar 

  218. Gephart SM, McGrath JM, Effken JA, Hlapern MD. Necrotizing enterocolitis risk: state of the science. Adv Neonatal Care. 2012;12:77–89.

    PubMed  PubMed Central  Google Scholar 

  219. Morgan J, Young L, McGuire W. Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Sust Rev. 2013;(5):CD001970.

    Google Scholar 

  220. Morgan J, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2013;(3):CD001241.

    Google Scholar 

  221. Quigley M, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 2014;(4):CD002971.

    Google Scholar 

  222. Alfaleh K, Anabrees J, Bassler D, Al-Kharfi T. Probioitcs for prevention of necrotising enterocolitis in preterm neonates. Cochrane Database Syst Rev. 2011;(16):CD005496.

    Google Scholar 

  223. Musso CG, Chezzi L, Ferrais J. Renal physiology in newborns and old people: similar characteristics but different mechanisms. Int Urol Nephrol. 2004;36:273–6.

    PubMed  Google Scholar 

  224. Sulyok E, Varga F, Gyory E, Jobst K, Csaba IF. On the mechanisms of renal sodium handling in newborn infants. Biol Neonate. 1980;37:75–9.

    CAS  PubMed  Google Scholar 

  225. Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D. Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res. 2011;69:354–8.

    PubMed  Google Scholar 

  226. Jetton J, Askenazi D. Acute kidney injury in the neonate. Clin Perinatol. 2014;41:487–502.

    PubMed  Google Scholar 

  227. Askenazi DJ, Griffin R, McGwin G, Carlo W, Ambalavanan N. Acute kidney injury is independently associated with mortality in very low birth weight infants: a matched case-control analysis. Pediatr Nephrol. 2009;24:991–7.

    PubMed  Google Scholar 

  228. Andreoli SP. Acute renal failure in the newborn. Semin Perinatol. 2004;28:112–23.

    PubMed  Google Scholar 

  229. Smith LK, Draper ES, Field D. Long-term outcome or the tiniest or most immature babies: survival rates. Semin Fetal Neonatal Med. 2014;19:72–7.

    PubMed  Google Scholar 

  230. Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371: 261–9.

    PubMed  Google Scholar 

  231. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular haemorrhage: a study of infants with birthweight <1500 g. J Pediatr. 1978;92:529–34.

    CAS  PubMed  Google Scholar 

  232. Benders MJNL, Kersberge KJ, de Vries LS. Neuroimaging f white matter injury, intraventricular and cerebellar hemorrhage. Clin Perinatol. 2014;41:69–82.

    PubMed  Google Scholar 

  233. Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts: a review. J Neurosurg Pediatr. 2012;9:242–58.

    PubMed  Google Scholar 

  234. Wong D, Abdel-Latif M, Kent A, NICUS Network. Antenatal steroid exposure and outcomes of very premature infants: a regional cohort study. Arch Dis Child Fetal Neonatal Ed. 2014;99:F12–20.

    CAS  PubMed  Google Scholar 

  235. Scmidt B, Davis P, Moddemann D, Ohlsson A, Roberts RS, Saigal S, et al. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med. 2001;344:1966–72.

    CAS  PubMed  Google Scholar 

  236. Backes CH, Rivera BK, Haque U, Bridge JA, Smith CV, Hutchon DJ, Mercer JS. Placental transfusion strategies in very preterm neonates: a systematic review and meta-analysis. Obstet Gynecol. 2014;124:47–56.

    PubMed  Google Scholar 

  237. Chau V, McFadden DE, Poskitt KJ, Miller SP. Chorioamnionitis in the pathogenesis of brain injury in preterm infants. Clin Perinatol. 2014;41:83–103.

    PubMed  Google Scholar 

  238. Kwon SH, Vasung L, Ment LR, Huppi PS. The role of neuroimaging in predicting neurodevelopmental outcomes of preterm neonates. Clin Perinatol. 2014;41:257–83.

    PubMed  Google Scholar 

  239. Terry TL. Extreme prematurity and fibroplastic overgrowth of persistent vascular sheath behind each crystalline lens. Am J Ophthalmol. 1942;25:203–4.

    Google Scholar 

  240. Gilbert C. Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control. Early Hum Dev. 2008;84:77–82.

    PubMed  Google Scholar 

  241. Hellstrom A, Smith LEH, Dammann O. Retinopathy of prematurity. Lancet. 2013;382:1445–57.

    PubMed  PubMed Central  Google Scholar 

  242. Saugstad OD, Aune D. Optimal oxygenation of extremely low birth weight infants: a meta-analysis and systematic review of the oxygen saturation target studies. Neonatology. 2014;105:55–63.

    CAS  PubMed  Google Scholar 

  243. Fierson WM, American Academy of Pediatrics Section on Ophthalmology, American Academy of Ophthalmology, American Association for Pediatric Ophthalmology and Strabismus, American Association of Certified Orthoptists. Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 2013;131:189–95.

    PubMed  Google Scholar 

  244. Cryotherapy for Retinopathy of Prematurity Cooperative Group. Multicenter trial of cryotherapy for retinopathy of prematurity – preliminary results. Arch Ophthalmol. 1988;106:471–9.

    Google Scholar 

  245. Good WV, Hardy RJ, ETROP Multicenter Study Group. The multicenter study of early treatment for retinopathy of prematurity (ETROP). Ophthalmology. 2001;108:1013–4.

    CAS  PubMed  Google Scholar 

  246. Darlow BA, Ells AL, Gilbert CE, Gole GA, Quinn GE. Are we there yet? Bevacizumab therapy for retinopathy of prematurity. Arch Dis Child Fetal Neonatal Ed. 2013;98:F170–4.

    PubMed  Google Scholar 

  247. Robertson CMT, Howarth TM, Bork DLR, Dinu IA. Permanent bilateral sensory and neural hearing loss of children after neonatal intensive care because of extreme prematurity: a thirty-year study. Pediatrics. 2009;123:e797–807.

    PubMed  Google Scholar 

  248. Fawke J. Neurological outcomes following preterm births. Semin Fetal Neonatal Med. 2007;12:374–82.

    PubMed  Google Scholar 

  249. Doyle LW, Ford G, Davis N. Health and hospitalisations after discharge in extremely low birth weight infants. Semin Neonatol. 2003;8:137–45.

    PubMed  Google Scholar 

  250. Tammela OK. First-year infections after initial hospitalization in low birth weight infants with and without bronchopulmonary dysplasia. Scand J Infect Dis. 1992;24:515–24.

    CAS  PubMed  Google Scholar 

  251. Halvorsen T, Skadberg BT, Eide GE, Roksund OD, Carlsen KH, Bakke P. Pulmonary outcome in adolescents of extreme preterm birth: a regional cohort study. Acta Paediatr. 2004;93:1294–300.

    CAS  PubMed  Google Scholar 

  252. Vrijlandt EJ, Boezen HM, Gerritsen J, Stremmelaar EF, Duiverman EJ. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007;150:256–61.

    CAS  PubMed  Google Scholar 

  253. Siltanen M, Savilahti E, Pohjavuori M, Kajosaari M. Respiratory symptoms and lung function in relation to atopy in children born preterm. Pediatr Pulmonol. 2004;37:43–9.

    PubMed  Google Scholar 

  254. Gibson A-M, Doyle LW. Respiratory outcomes for the tiniest or most immature infants. Semin Fetal Neonatal Med. 2014;19:105–11.

    PubMed  Google Scholar 

  255. La Souef PN. Pediatric origins of adult lung diseases. 4. Tobacco related lung diseases begin in childhood. Thorax. 2000;55:1063–7.

    PubMed  PubMed Central  Google Scholar 

  256. Cunningham J, Docy DW, Speizer FE. Maternal smoking during pregnancy as a predictor of lung function in children. Am J Epidemiol. 1994;139:1139–52.

    CAS  PubMed  Google Scholar 

  257. Li YF, Gilliland FD, Berhane K, McConnell R, Gauderman WJ, Rappaport EB, et al. Effects of in utero and environmental tobacco smoke exposure on lung function in boys and girls with and without asthma. Am J Respir Crit Care Med. 2000;162:2097–104.

    CAS  PubMed  Google Scholar 

  258. Doyle LW, Ford GW, Olinsky A, Knoches AM, Callanan C. Passive smoking and respiratory function in very low birthweight children. Med J Aust. 1996;164:266–9.

    CAS  PubMed  Google Scholar 

  259. Saigal S. Functional outcomes of very premature infants into adulthood. Semin Fetal Neonatal Med. 2014;19:125–30.

    PubMed  Google Scholar 

  260. Saigal S, Stoskopf B, Pinelli J, Streiner D, Hoult L, Paneth N, et al. Self-perceived health-related quality of life of former extremely low birthweight infants at young adulthood. Pediatrics. 2006;118:1140–8.

    PubMed  Google Scholar 

  261. Barker DJP, Osmond C. Infant mortality, childhood, nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.

    CAS  PubMed  Google Scholar 

  262. Barker DJP. Developmental origins of chronic disease. Public Health. 2012;126:185–9.

    CAS  PubMed  Google Scholar 

  263. Kent AL. Developmental origins of health and disease: what should neonatologists/paediatricians be considering about the long-term health of their patients? J Paediatr Child Health. 2012;48:730–4.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison L. Kent BMBS, FRACP, MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Kent, A.L. (2015). Prematurity. In: Khong, T.Y., Malcomson, R.D.G. (eds) Keeling’s Fetal and Neonatal Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-19207-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19207-9_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19206-2

  • Online ISBN: 978-3-319-19207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics