Skip to main content

Compressive Sensing and Sparse Coding

  • Chapter
  • First Online:
Handbook of Big Data Analytics

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

  • 4466 Accesses

Abstract

Compressive sensing is a technique to acquire signals at rates proportional to the amount of information in the signal, and it does so by exploiting the sparsity of signals. This section discusses the fundamentals of compressive sensing, and how it is related to sparse coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The details about when this would work is presented in later sections.

  2. 2.

    In fact, any distribution satisfying a specific concentration inequality would do (Baraniuk et al. 2008).

  3. 3.

    More information about dictionary training can be found in Sect. 14.7.

  4. 4.

    The magnitude of the signal is lost in this setting.

References

  • Baraniuk R, Davenport M, DeVore R, Wakin M (2008) A simple proof of the restricted isometry property for random matrices. Constr Approx 28(3):253–263

    Article  MathSciNet  Google Scholar 

  • Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202

    Article  MathSciNet  Google Scholar 

  • Blumensath T, Davies ME (2009) Iterative hard thresholding for compressed sensing. Appl Comput Harmon Anal 27(3):265–274

    Article  MathSciNet  Google Scholar 

  • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  Google Scholar 

  • Candes EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MathSciNet  Google Scholar 

  • Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory 52(12):5406–5425

    Article  MathSciNet  Google Scholar 

  • Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  Google Scholar 

  • Coates A, Ng AY, Lee H (2011) An analysis of single-layer networks in unsupervised feature learning. In: International conference on artificial intelligence and statistics, pp 215–223

    Google Scholar 

  • Comiter M, Chen H-C, Kung HT (2017) Nonlinear compressive sensing for distorted measurements and application to improving efficiency of power amplifiers. In: IEEE international conference on communications

    Google Scholar 

  • Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  • Efron B, Hastie T, Johnstone I, Tibshirani R, et al (2004) Least angle regression. Ann Stat 32(2):407–499

    Google Scholar 

  • Gkioulekas IA, Zickler T (2011) Dimensionality reduction using the sparse linear model. In: Advances in neural information processing systems, pp 271–279

    Google Scholar 

  • Glasner D, Bagon S, Irani M (2009) Super-resolution from a single image. In: 2009 IEEE 12th international conference on computer vision. IEEE, New York, pp 349–356

    Google Scholar 

  • Jacques L, Laska JN, Boufounos PT, Baraniuk RG (2013) Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Trans Inf Theory 59(4):2082–2102

    Article  MathSciNet  Google Scholar 

  • Lee H, Battle A, Raina R, Ng AY (2006) Efficient sparse coding algorithms. In: Advances in neural information processing systems, pp 801–808

    Google Scholar 

  • Lin T-H, Kung HT (2014) Stable and efficient representation learning with nonnegativity constraints. In: Proceedings of the 31st international conference on machine learning (ICML-14), pp 1323–1331

    Google Scholar 

  • Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: Proceedings of the 26th annual international conference on machine learning. ACM, New York, pp 689–696

    Google Scholar 

  • Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image restoration. In: 2009 IEEE 12th international conference on computer vision. IEEE, New York, pp 2272–2279

    Chapter  Google Scholar 

  • Needell D, Tropp JA (2009) Cosamp: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321

    Article  MathSciNet  Google Scholar 

  • Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Res 37(23):3311–3325

    Article  Google Scholar 

  • Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: 1993 conference record of the twenty-seventh Asilomar conference on signals, systems and computers. IEEE, New York, pp 40–44

    Google Scholar 

  • Plan Y, Vershynin R (2013) Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach. IEEE Trans Inf Theory 59(1):482–494

    Article  MathSciNet  Google Scholar 

  • Romberg J (2009) Compressive sensing by random convolution. SIAM J Imag Sci 2(4):1098–1128

    Article  MathSciNet  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  • Yan M, Yang Y, Osher S (2012) Robust 1-bit compressive sensing using adaptive outlier pursuit. IEEE Trans Signal Process 60(7):3868–3875

    Article  MathSciNet  Google Scholar 

  • Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: IEEE conference on computer vision and pattern recognition, CVPR 2009. IEEE, New York, pp 1794–1801

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, K., Kung, H.T. (2018). Compressive Sensing and Sparse Coding. In: Härdle, W., Lu, HS., Shen, X. (eds) Handbook of Big Data Analytics. Springer Handbooks of Computational Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-18284-1_14

Download citation

Publish with us

Policies and ethics