Skip to main content

The New Science of Musculoskeletal Aging in Bone, Muscle, and Tendon/Ligament

  • Chapter
  • First Online:
Book cover Masterful Care of the Aging Athlete

Abstract

As the body ages, changes are seen throughout the musculoskeletal system, namely, within bone, muscle, tendons, and ligaments. An age-related decrease in bone mineral density (BMD), or primary osteoporosis, is defined by the World Health Organization as having a hip or spine BMD of at least 2.5 standard deviations below the mean of young, healthy women measured on dual X-ray absorptiometry. Sarcopenia, or age-related muscle loss, begins at approximately 40 years of age and is more prevalent in the sedentary population. Intrinsic and extrinsic factors associated with aging affect tendon and ligament strength, thus leading to more injuries and prolonged healing time. These changes in the musculoskeletal system can lead to significant disability, thus increasing healthcare costs. Prevention is focused on adequate nutrition, supplements, physical activity, and strength training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–36.

    Article  PubMed  Google Scholar 

  2. National Osteoporosis Foundation. Physician’s guide to prevention and treatment of osteoporosis. http://www.nof.org/professionals/Clinicians_Guide.htm. 1 Apr 2014.

  3. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR, American College of Sports Medicine. American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36(11):1985–96.

    Article  PubMed  Google Scholar 

  4. Syed F, Hoey K. Integrative physiology of the aging bone: insights from animal and cellular models. Ann N Y Acad Sci. 2010:95–106.

    Article  PubMed  Google Scholar 

  5. Carrington JL. Aging bone and cartilage: cross-cutting issues. Biochem Biophys Res Commun. 2005;328:700–8.

    Article  CAS  PubMed  Google Scholar 

  6. Almeida M, O’Brien C. Basic biology of skeletal aging: role of stress response pathways. J Gerontol A Biol Sci Med Sci. 2013;68:1197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prevention and management of osteoporosis: report of a WHO Scientific Group. Geneva, Switzerland; 2003. http://whqlibdoc.who.int/trs/WHO_TRS_921.pdf. Accessed 7 Dec 2008.

  8. Kanis JA, Gluer CC, for the Committee of Scientific Advisors, International Osteoporosis Foundation. An update on the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int. 2000;11:192–202.

    Google Scholar 

  9. U.S. Department of Health and Human Services. Bone health and osteoporosis: a report of the surgeon general (2004). http://www.surgeongeneral.gov/library/bonehealth/content.html. Accessed 7 Dec 2008.

  10. Marcus R, Wong M, Heath H III, Stock JL. Antiresorptive treatment of postmenopausal osteoporosis: comparison of study designs and outcomes in large clinical trials with fracture as an endpoint. Endocr Rev. 2002;23(1):16–37.

    Article  CAS  PubMed  Google Scholar 

  11. MacLean C, Newberry S, Maglione M, et al. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med. 2008;148(3):197–213.

    Article  PubMed  Google Scholar 

  12. Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31:45–50.

    Article  PubMed  Google Scholar 

  13. Leigey D, Irrgang J, Francis K, et al. Participation in high-impact sports predicts bone mineral density in senior olympic athletes. Sports Health. 2009;1:508–13.

    Article  PubMed  PubMed Central  Google Scholar 

  14. NIH Consensus Conference: Optimal calcium intake: NIH consensus development panel on optimal calcium intake. JAMA. 1994;272:1942–1948.

    Google Scholar 

  15. Bischoff-Ferari HA, Willett WC, Wong JB, et al. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA. 2005;293:2257–64.

    Article  Google Scholar 

  16. Mitchell WK, Williams J, Atherton P, et al. Sarcopenia, dynapenia, and the impact of advancing age on the human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Janssen I, Shepard DS, Katzmarzyk PT, et al. The health care cost of sarcopenia in the United States. J Gerontol. 2004;52:80–5.

    Google Scholar 

  18. Faulkner JA, Larkin LM, Claflin DR, et al. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007;34:1091–6.

    Article  CAS  PubMed  Google Scholar 

  19. Horstman AM, Dillon EL, Urban RJ, et al. The role of androgens and estrogens on healthy aging and longevity. J Gerontol. 2012;67:1140–52.

    Article  CAS  Google Scholar 

  20. Larsson L, Karlsson J. Isometric and dynamic endurance as a function of age and skeletal muscle characteristics. Acta Physiol Scand. 1978;104:129–36.

    Article  CAS  PubMed  Google Scholar 

  21. Siparsky P, Kirkendall D, Garrett W. Muscle changes in aging: understanding sarcopenia. Sports Health. 2014;6:36–40.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cesari M, Fielding R, Pahor M, et al. Biomarkers of sarcopenia in clinical trials- recommendations from the international working group on sarcopenia. J Cachexia Sarcopenia Muscle. 2012;3:181–90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goodpaster BH, Parks SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol. 2006;61:1059–64.

    Article  Google Scholar 

  24. Castaneda C, Charnley JM, Evans WJ, et al. Elderly women accommodate to a low-protein diet with losses of body cell mass, muscle function, and immune response. Am J Clin Nutr. 1995;62:30–9.

    Article  CAS  PubMed  Google Scholar 

  25. Fiatarone MA, Marks EC, Ryan ND, et al. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990;263:3029–34.

    Article  CAS  PubMed  Google Scholar 

  26. Frontera WR, Meredith CN, O’Reilly KP, et al. Strength and conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol. 1988;64:1038–44.

    Article  CAS  PubMed  Google Scholar 

  27. American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30:975–91.

    Google Scholar 

  28. Frizziero A, Vittadini F, Gasparre G. Impact of oestrogen deficiency and aging on tendon: concise review. Muscles Ligaments Tendons J. 2014;4:324–8.

    PubMed  PubMed Central  Google Scholar 

  29. McCarthy M, Hannafin J. The mature athlete: aging tendon and ligament. Sports Health. 2014;6:41–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shwartz Y, Blitz E, Zelzer E. One load to rule them all: mechanical control of the musculoskeletal system in development and aging. Differentiation. 2013;86:104–11.

    Article  CAS  PubMed  Google Scholar 

  31. Chard MD, Cawston TE, Riley GP, et al. Rotator cuff degeneration and lateral epicondylitis: a comparative histological study. Ann Rheum Dis. 1994;53:30–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fu SC, Chan BP, Wang W, et al. Increased expression of matrix metalloproteinase 1 (MMP1) in 11 patients with patellar tendinosis. Acta Orthop Scand. 2002;73:658–62.

    Article  PubMed  Google Scholar 

  33. Lavagnino M, Arnoczky SP. In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. J Orthop Res. 2005;23:1211–8.

    Article  CAS  PubMed  Google Scholar 

  34. Hasegawa A, Otsuki S, Pauli C, et al. Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis. Arthritis Rheum. 2012;64:696–704.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Woo SL, Hollis JM, Adams DJ, et al. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med. 1991;19:217–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vonda J. Wright MD, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wright, V.J., Tejpar, F. (2018). The New Science of Musculoskeletal Aging in Bone, Muscle, and Tendon/Ligament. In: Wright, V., Middleton, K. (eds) Masterful Care of the Aging Athlete. Springer, Cham. https://doi.org/10.1007/978-3-319-16223-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16223-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16222-5

  • Online ISBN: 978-3-319-16223-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics