Skip to main content

A framework for the probabilistic analysis of meteotsunamis

  • Original Paper
  • Chapter
  • First Online:
  • 584 Accesses

Abstract

A probabilistic technique is developed to assess the hazard from meteotsunamis. Meteotsunamis are unusual sea-level events, generated when the speed of an atmospheric pressure or wind disturbance is comparable to the phase speed of long waves in the ocean. A general aggregation equation is proposed for the probabilistic analysis, based on previous frameworks established for both tsunamis and storm surges, incorporating different sources and source parameters of meteotsunamis. Parameterization of atmospheric disturbances and numerical modeling is performed for the computation of maximum meteotsunami wave amplitudes near the coast. A historical record of pressure disturbances is used to establish a continuous analytic distribution of each parameter as well as the overall Poisson rate of occurrence. A demonstration study is presented for the northeast U.S. in which only isolated atmospheric pressure disturbances from squall lines and derechos are considered. For this study, Automated Surface Observing System stations are used to determine the historical parameters of squall lines from 2000 to 2013. The probabilistic equations are implemented using a Monte Carlo scheme, where a synthetic catalog of squall lines is compiled by sampling the parameter distributions. For each entry in the catalog, ocean wave amplitudes are computed using a numerical hydrodynamic model. Aggregation of the results from the Monte Carlo scheme results in a meteotsunami hazard curve that plots the annualized rate of exceedance with respect to maximum event amplitude for a particular location along the coast. Results from using multiple synthetic catalogs, resampled from the parent parameter distributions, yield mean and quantile hazard curves. Further refinements and improvements for probabilistic analysis of meteotsunamis are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aida I (1969) Numerical experiments for the tsunami propagation—the 1964 Niigata tsunami and the 1968 Tokachi-Oki tsunami. Bull Earthq Res Inst 47:673–700

    Google Scholar 

  • Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-tree approach for probabilistic tsunami hazard analysis and it applications to the Japanese Coasts. Pure Appl Geophys 164:577–592

    Article  Google Scholar 

  • Asano T, Yamashiro T, Nishimura N (2012) Field observations of meteotsunami locally called “abiki” in Urauchi Bay, Kami-Koshiki Island, Japan. Nat Hazards 64:1685–1706

    Article  Google Scholar 

  • Bluestein HB (1993) In synoptic–dynamic meteorology in midlatitudes: observations and theory of weather systems, vol 2. Oxford University Press, Oxford, p 594

    Google Scholar 

  • Box GEP, Muller ME (1958) A note on the generation of random normal deviates. Ann Math Stat 29:610–611

    Article  Google Scholar 

  • Carrier GF (1995) On-shelf tsunami generation and coastal propagation. In: Tsuchiya Y, Shuto N (eds) Tsunami: progress in prediction, disaster prevention and warning, vol 4. Kluwer, Dordrecht, pp 1–20

    Chapter  Google Scholar 

  • Churchill DD, Houston SH, Bond NA (1995) The Daytona Beach wave of 3–4 July 1992: a shallow-water gravity wave forced by a propagating squall line. Bull Am Meteorol Soc 76:21–32

    Article  Google Scholar 

  • Fujima K, Dozono R, Shigemura T (2000) Generation and propagation of tsunami accompanying edge waves on a uniform shelf. Coast Eng J 42:211–236

    Article  Google Scholar 

  • Geist EL (2012) Near-field tsunami edge waves and complex earthquake rupture. Pure Appl Geophys. doi:10.1007/s00024-012-0491-7

    Article  Google Scholar 

  • Geist EL, Oglesby DD (2013) Earthquake mechanics and tsunami generation. In: Beer M, Patelli E, Kougioumtzoglou I, Au IS-K (eds) Encyclopedia of Earthquake Engineering, Springer, New York

    Google Scholar 

  • Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314

    Article  Google Scholar 

  • Geist EL, Parsons T (2014) Undersampling power-law size distributions: effect on the assessment of extreme natural hazards. Nat Hazards 72:565–595

    Article  Google Scholar 

  • Geist EL, Parsons T, ten Brink US, Lee HJ (2009) Tsunami probability. In: Bernard EN, Robinson AR (eds) The sea, vol 15. Harvard University Press, Cambridge, pp 93–135

    Google Scholar 

  • Greenspan HP (1956) The generation of edge waves by moving pressure distributions. J Fluid Mech 1:574–592

    Article  Google Scholar 

  • Hibiya T, Kajiura K (1982) Origin of the Abiki phenomenon (a kind of seiche) in Magasaki Bay. J Oceanogr Soc Jpn 38:172–182

    Article  Google Scholar 

  • Horvath K, Vilibić I (2014) Atmospheric mesoscale conditions during the Boothbay meteotsunami: a numerical sensitivity study using a high-resolution mesoscale model. Nat Hazards. doi:10.1007/s11069-014-1055-1

    Article  Google Scholar 

  • Irish JL, Resio DT, Cialone MA (2009) A surge response function approach to coastal hazard assessment. Part 2: quantification of spatial attributes of response functions. Nat Hazards 51:183–205

    Article  Google Scholar 

  • Irish JL, Song YK, and Chang K-A (2011) Probabilistic hurricane surge forecasting using parameterized surge response functions. Geophys Res Lett 38. doi:10.1029/2010GL046347

    Article  Google Scholar 

  • Lamb H (1932) In hydrodynamics, vol 6. Dover Publications, Mineola, p 768

    Google Scholar 

  • Lynett PJ, Liu PL-F (2005) A numerical study of run-up generated by three-dimensional landslides. J Geophys Res 10. doi:10.1029/2004JC002443

  • Martinsen EA, Gjevik B, Röed LP (1979) A numerical model for long barotropic waves and storm surges along the western coast of Norway. J Phys Oceanogr 9:1126–1138

    Article  Google Scholar 

  • Mercer D, Sheng J, Greatbatch RJ, Bobanović J (2002) Barotropic waves generated by storms moving rapidly over shallow water. J Geophys Res 107. doi:10.1029/2001JC001140

  • Monserrat S, Ibbetson A, Thorpe AJ (1991) Atmospheric gravity waves and the “Rissaga” phenomenon. Q J R Meteorol Soc 117:553–570

    Google Scholar 

  • Monserrat S, Vilibić I, Rabinovich AB (2006) Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Nat Hazards Earth Syst Sci 6:1035–1051

    Article  Google Scholar 

  • Parsons T, Geist EL (2009) Tsunami probability in the Caribbean region. Pure appl Geophys 165:2089–2116

    Article  Google Scholar 

  • Pasquet S, Vilibić I (2013) Shelf edge reflection of atmospherically generated long ocean waves alon gthe central U.S. East Coast. Cont Shelf Res 66:1–8

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) In numerical recipes: the art of scientific computing, vol 3. Cambridge University Press, Cambridge, p 1256

    Google Scholar 

  • Proudman J (1929) The effects on the sea of changes in atmospheric pressure. Geophys J Int 2:197–209

    Article  Google Scholar 

  • Pugh DT, Vassie JM (1978) Extreme sea levels from tide and surge probability. In: coastal engineering Proceedings, 16th international conference on Coastal Engineering, Hamburg, pp 911–30

    Google Scholar 

  • Rabinovich AB (2012) Meteorological tsunamis along the east coast of the United States. In: Towards a meteotsunami warning system along the U.S. Coastline (TMEWS), Institute of Oceanography and Fisheries, Croatia, 7 pp. http://jadran.izor.hr/tmews/results/Report-Rabinovich-TGdata-catalogues-analysis.pdf

  • Rabinovich AB, Monserrat S (1996) Meteorological tsunamis near the Balearic and Kuril islands: descriptive and statistical analysis. Nat Hazards 13:55–90

    Article  Google Scholar 

  • Rabinovich AB, Monserrat S (1998) Generation of meteorological tsunamis (large amplitude seiches) near the Balearic and Kuril Islands. Nat Hazards 18:27–55

    Article  Google Scholar 

  • Rabinovich AB, Shevchenko GV, Sokolova SE (1992) An estimation of extreme sea levels in the northern part of the Sea of Japan. La Mer 30:179–190

    Google Scholar 

  • Raichlen F, Lee JJ (1992) Oscillation of bays, harbors, and lakes. In: Herbich JB (ed) Handbook of coastal and ocean engineering, vol 3. Gulf Publishing Company, Houston, pp 1073–1113

    Google Scholar 

  • Reid RO, Bodine BR (1968) Numerical model for storm surges in Galveston Bay. J Waterw Harb Division A.C.E. 94:33–57

    Google Scholar 

  • Renault L, Vizoso G, Jansá A, Wilkin J, Tintoré J (2011) Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models. Geophys Res Lett 38. doi:10.1029/2011GL047361

    Article  Google Scholar 

  • Resio DT, Irish J, Cialone M (2009) A surge response function approach to coastal hazard assessment—part 1: basic concepts. Nat Hazards 51:163–182

    Article  Google Scholar 

  • Rotunno R, Klemp JB, Weisman ML (1988) A theory for strong, long-lived squall lines. J Atmos Sci 45:463–485

    Article  Google Scholar 

  • Sallenger AH, List JH, Gelfenbaum G, Stumpf RP, Hansen M (1995) Large wave at Daytona Beach, Florida, explained as a squall-line surge. J Coastal Res 11:1383–1388

    Google Scholar 

  • Salvadori G, De Michele C (2004) Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40. doi:10.1029/2004WR003133

  • Satake K (2007) Tsunamis. In: Kanamori H, Schubert G (eds) Treatise on geophysics, volume 4-earthquake seismology, vol 4. Elsevier, Amsterdam, pp 483–511

    Chapter  Google Scholar 

  • Tebaldi C, Strauss BH, and Zervas CE (2012) Modelling sea level rise impacts on storm surges along US coasts. Environ Res Lett 7. doi:10.1088/748-9326/7/1/014032

  • ten Brink US, Chaytor JD, Geist EL, Brothers DS, Andrews BD (2014) Assessment of tsunami hazard to the U.S. Atlantic margin. Mar Geol 353:31–54

    Article  Google Scholar 

  • Toro GR, Resio DT, Divoky D, Niedoroda AW, Reed C (2010) Efficient joint-probability methods for hurrican surge frequency analysis. Ocean Eng 37:125–134

    Article  Google Scholar 

  • U.S. Nuclear Regulatory Commission (2013) In: Nicholson TJ, Reed W (eds) Proceedings of the workshop on probabilistic flood hazard assessment (PFHA). NUREG/CP-0302, Rockville

    Google Scholar 

  • Vennell R (2007) Long barotropic waves generated by a storm crossing topography. J Phys Oceanogr 37:2809–2823

    Article  Google Scholar 

  • Vennell R (2010) Resonance and trapping of topographic transient ocean waves generated by a moving atmospheric disturbance. J Fluid Mech 650:427–443

    Article  Google Scholar 

  • Vickery PJ, Skerlj PF, Twisdale LA (2000) Simulation of hurricane risk in the U.S. using empirical track model. J Struct Eng 126:1222–1237

    Article  Google Scholar 

  • Vilibić I (2005) Numerical study of the Middle Adriatic coastal waters’ sensitivity to the various air pressure travelling disturbances. Ann Geophys 23:3569–3578

    Article  Google Scholar 

  • Vilibić I (2008) Numerical simulations of the Proudman resonance. Cont Shelf Res 28:574–581

    Article  Google Scholar 

  • Vilibić I, Domijan N, Orlić M, Leder N, and Pasarić M (2004) Resonant coupling of a traveling air pressure disturbance with the east Adriatic coastal waters. J Geophys Res 109. doi:10.1029/2004JC002279

  • Vilibić I, Domijan N, Čupić S (2005) Wind versus air pressure seiche triggering in the Middle Adriatic coastal waters. J Mar Syst 57:189–200

    Article  Google Scholar 

  • Vilibić I, Monserrat S, Rabinovich AB, Mihanović H (2008) Numerical modelling of the destructive meteotsunami of 15 June, 2006 on the coast of the Balearic Islands. Pure appl Geophys 165:2169–2195

    Article  Google Scholar 

  • Vilibić I, Horvath K, Strelec Mohović N, Monserrat S, Marcos M, Amores Á et al (2013) Atmospheric processes responsible for generation of the 2008 Boothbay meteotsunami. Nat Hazards. doi:10.1007/s10069-013-0811-y

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the constructive comments during review of this paper by Alexander Rabinovich, Richard Signell, and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric L. Geist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 US Government

About this chapter

Cite this chapter

Geist, E.L., ten Brink, U.S., Gove, M. (2014). A framework for the probabilistic analysis of meteotsunamis. In: Vilibić, I., Monserrat, S., Rabinovich, A.B. (eds) Meteorological Tsunamis: The U.S. East Coast and Other Coastal Regions. Springer, Cham. https://doi.org/10.1007/978-3-319-12712-5_7

Download citation

Publish with us

Policies and ethics