Skip to main content

Multivariate Balanced Vector-Valued Refinable Functions

  • Conference paper

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 145))

Abstract

Vanishing moments of sufficiently high order and compact supports of reasonable size contribute to the great success of wavelets in various areas of applications, particularly in signal and image processing. However, for multi—wavelets, polynomial preservation of the refinable function vectors does not necessarily imply annihilation of discrete polynomials by the high—pass filters of the corresponding orthogonal or bi—orthogonal multi—wavelets. This led to the introduction of the notion of “balanced” multi—wavelets by Lebrun and Vetterli, and later, generalization to higher—order balancing by Selesnick. Selesnick’s work is concerned only with orthonormal refinable function vectors and orthonormal multi—wavelets. In this paper after giving a brief overview of the state—of—the—art of vector—valued refinable functions in the preliminary section, we will discuss our most recent contribution to this research area. Our goal is to derive a set of necessary and sufficient conditions that characterize the balancing property of any order for the general multivariate matrix—dilation setting. We will end the second section by demonstrating our theory with examples of univariate splines and bivariate splines on the four—directional mesh.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Attakitmongcol, D. P. Hardin, D. M. Wilkes: Multiwavelet prefislters II: Optimal orthogonal prefilters, IEEE Tran. Image Proc., to appear.

    Google Scholar 

  2. C. de Boor, R. DeVore, A. Ron: Approximation orders of FSI spaces in L2(1R d, Constr. Approx. 14 (1998), 631–652.

    MATH  MathSciNet  Google Scholar 

  3. C. Cabrelli, C. Heil, U. Molter: Accuracy of lattice translates of several multidimensional refinable functions J. Approx. Theory 95 (1998), 5–52

    Google Scholar 

  4. C. Cabrelli, C. Heil, U. Molter: Accuracy of several multidimensional refinable distributions, J. Fourier Anal. Appl. 6 (2000), 483–502.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. R. Chen, R. Q. Jia, S. D. Riemenschneider: Convergence of vector subdivision schemes in Sobolev spaces, Appl. Comput. Harmonic Anal. 12 (2002), 128–149.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. K. Chui: Multivariate Splines, NSF-CBMS Series #54, SIAM, Philadelphia, 1988.

    Book  Google Scholar 

  7. C. K. Chui, Q. T. Jiang: Characterization and construction of balanced multi-wavelets in Rs, manuscript.

    Google Scholar 

  8. C. K. Chui, J. Lian: A study of orthonormal multi-wavelets, J. Appl. Numer. Math. 20 (1996), 273–298.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Cohen, I. Daubechies, G. Plonka: Regularity of refinable function vectors, J. Fourier Anal. Appl. 3 (1997), 295–324.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Donovan, J. Geronimo, D. P. Hardin, P. Massopust: Construction of orthogonal wavelets using fractal interpolation functions, SIAM J. Math. Anal. 27 (1996), 1158–1192.

    MATH  MathSciNet  Google Scholar 

  11. G. C. Donovan, J. S. Geronimo, D. P. Hardin: Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets, SIAM J. Math. Anal. 30 (1999), 1029–1056.

    MATH  MathSciNet  Google Scholar 

  12. J. Geronimo, D. P. Hardin, P. Massopust: Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory 78 (1994), 373–401.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. N. T. Goodman: Pairs of refinable bivariate splines, In: Advanced Topics in Multivariate Approximation, F. Fontanella, K. Jetter and L.L. Schumaker (eds.), World Sci. Publ. Co., Singapore, 1996.

    Google Scholar 

  14. T. N. T. Goodman, S. L. Lee: Convergence of cascade algorithms, In: Mathematical Methods for Curves and Surfaces II,191–212, M. Dhlen, T. Lyche, and L.L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1998.

    Google Scholar 

  15. B. Han, R. Q. Jia: Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal. 29 (1998), 1177–1999.

    MATH  MathSciNet  Google Scholar 

  16. D. P. Hardin, D. W. Roach: Multiwavelet prefilters I: Orthogonal prefilters preserving approximation order p < 2, IEEE Tran. Circuits and System—II 45 (1998), 1119–1125.

    Google Scholar 

  17. C. Heil, D. Colella: Matrix refinement equations: existence and uniqueness, J. Fourier Anal. Appl. 2 (1996), 363–377.

    MATH  MathSciNet  Google Scholar 

  18. C. Heil, G. Strang, V. Strela: Approximation by translates of refinable functions, Numer. Math. 73 (1996), 75–94.

    MATH  MathSciNet  Google Scholar 

  19. L. R. Iyer, A. E. Bell: Improving image compression performance with balanced multiwavelets, in Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers (Asilomar 2001), 773–777, Pacific Grove, CA, 2001.

    Google Scholar 

  20. R. Q. Jia: Subdivision schemes in L p spaces, Adv. Comp. Math. 3 (1995), 309–341.

    MATH  Google Scholar 

  21. R. Q. Jia: Approximation properties of multivariate wavelets, Math. Comp. 67 (1998), 647–665.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Q. Jia: Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc. 351 (1999), 4089–4112.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Q. Jia: Convergence of vector subdivision schemes and construction of biorthogonal multiple wavelets, In: Advances in Wavelets, Ka—Sing Lau (ed.), 199–227, Springer, Singapore, 1999.

    Google Scholar 

  24. R. Q. Jia: Cascade algorithms in wavelet analysis,preprint, Univ. of Alberta, 2002.

    Google Scholar 

  25. R. Q. Jia, Q. T. Jiang: Approximation power of refinable vectors of functions, In: Wavelet analysis and applications, Studies Adv. Math. #25, 155–178, Amer. Math. Soc., Providence, RI, 2002.

    Google Scholar 

  26. R. Q. Jia, Q. T. Jiang: Spectral analysis of transition operators and its applications to smoothness analysis of wavelets,SIAM J. Matrix Anal. Appl., to appear.

    Google Scholar 

  27. R. Q. Jia, K. S. Lau, D. X. Zhou: L p solutions of refinement equations, J. Fourier Anal. Appl. 7(2001), 143–167.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Q. Jia, S. D. Riemenschneider, D. X. Zhou: Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998), 1533–1563.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Q. Jia, S. D. Riemenschneider, D. X. Zhou: Smoothness of multiple refinable functions and multiple wavelets, SIAM J. Matrix Anal. Appl. 21 (1999), 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. Q. Jia, Z. W. Shen: Multiresolution and wavelets, Proc. Edinburgh Math. Soc. 37 (1994), 271–300.

    MATH  MathSciNet  Google Scholar 

  31. R. Q. Jia, S. R. Zhang: Spectral properties of the transition operator associated to a multivariate refinement equation, Linear Algebra Appl. 292 (1999), 155–178.

    Article  MATH  MathSciNet  Google Scholar 

  32. Q. T. Jiang: Biorthogonal multiwavelets, Tech. Report, National University of Singapore, 1997.

    Google Scholar 

  33. Q. T. Jiang: Orthogonal multiwavelets with optimum time frequency resolution, IEEE Trans. Signal Proc., 46 (1998), 830–844.

    Article  Google Scholar 

  34. Q. T. Jiang: Multivariate matrix refinable functions with arbitrary matrix dilation, Trans. Amer. Math. Soc. 351 (1999), 2407–2438.

    Article  MATH  MathSciNet  Google Scholar 

  35. Q. T. Jiang: Parameterization of symmetric orthogonal multifilter banks with different filter length, Linear Algebra Appl. 311 (2000), 79–96.

    Article  MATH  MathSciNet  Google Scholar 

  36. Q.T. Jiang, P. Oswald: On the analysis of 0-subdivision,J. Comp. Appl. Math., to appear.

    Google Scholar 

  37. B. R. Johnson: Multiwavelet moments and projection prefilters,IEEE Trans. Signal Proc. 48 (2000), 3100–3108.

    Article  MATH  Google Scholar 

  38. M. J. Lai: Approximation order from bivariate C 1 cubics on a four-directional mesh is full, Computer Aided Geometric Design 11 (1994), 215–223.

    Article  MATH  MathSciNet  Google Scholar 

  39. W. Lawton, S. L. Lee, Z. W. Shen: Convergence of multidimensional cascade algorithm, Numer. Math. 78 (1998), 427–438.

    MATH  MathSciNet  Google Scholar 

  40. J. Lebrun, M. Vetterli: Balanced multiwavelets: Theory and design,IEEE Trans. Signal Processing 46 (1998), 1119–1125.

    Article  MathSciNet  Google Scholar 

  41. J. Lebrun, M. Vetterli: High order balanced multiwavelets, In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), Seattle, 1998.

    Google Scholar 

  42. R. L. Long, W. Chen, S. L. Yuan: Wavelets generated by vector multiresolution analysis, Appl. Comput. Harmonic Anal. 4 (1997), 317–350.

    Article  MATH  MathSciNet  Google Scholar 

  43. M.B. Martin, A. E. Bell: New image compression techniques Using multiwavelets and multiwavelet packets, IEEE Trans. Image Proc. 10 (2001), 500–511.

    Article  MATH  Google Scholar 

  44. C. A. Micchelli, T. Sauer: Regularity of multiwavelets, Adv. Comp. Math. 7 (1997), 455–545.

    MATH  MathSciNet  Google Scholar 

  45. C. A. Micchelli, T. Sauer: On vector subdivision, Math. Z. 229 (1998), 621–674.

    Article  MATH  MathSciNet  Google Scholar 

  46. G. Plonka: Approximation order provided by refinable function vectors, Constr. Approx. 13 (1997), 221–244.

    MATH  MathSciNet  Google Scholar 

  47. A. Ron, Z. W. Shen: The Sobolev regularity of refinable functions, J. Approx. Theory 106 (2000), 185–225.

    Article  MATH  MathSciNet  Google Scholar 

  48. I. W. Selesnick: Multiwavelets with extra approximation properties, IEEE Trans. Signal Proc. 46 (1998), 2898–2909.

    Article  MathSciNet  Google Scholar 

  49. I. W. Selesnick: Balanced multiwavelet bases based on symmetric FIR filters, IEEE Trans. Signal Proc. 48 (2000), 184–191.

    Article  MATH  Google Scholar 

  50. Z. W. Shen: Refinable function vectors, SIAM J. Math. Anal. 29 (1998), 235–250.

    MATH  Google Scholar 

  51. G. Strang: Eigenvalues of (j 2)H and convergence of cascade algorithm,IEEE Trans. Signal Proc. 44 (1996), 233–238.

    Article  Google Scholar 

  52. V. Strela, P. Heller, G. Strang, P. Topiwala, C. Heil: The application of multiwavelet filter banks to image processing, IEEE Trans. Image Proc. 8 (1999), 548–563.

    Article  Google Scholar 

  53. V. Strela, A. Walden: Signal and image denoising via wavelet thresholding: orthogonal and biorthogonal, scalar and multiple wavelet transforms, In: Nonlinear and nonstationary signal processing, 395–441, Cambridge Univ. Press, Cambridge, 2000.

    Google Scholar 

  54. J. Y. Tham, L. X. Shen, S. L. Lee, H. H. Tan: A general approach for analysis and application of discrete multiwavelet transforms, IEEE Trans. Signal Proc. 48 (2000), 457–464.

    Article  MATH  MathSciNet  Google Scholar 

  55. C. Weidmann, J. Lebrun, M. Vetterli: Significance tree image coding using balanced multiwavelets, In: Proceedings of IEEE ICIP, Vol. 1 97–101, 1998.

    Google Scholar 

  56. T. Xia, Q. T. Jiang: Optimal multifilter banks: Design,related symmetric extension transform and application to image compression, IEEE Trans. Signal Proc. 47 (1999), 1878–1889.

    Article  MATH  Google Scholar 

  57. X. G. Xia: A new prefilter design for discrete multiwavelet transform, IEEE Trans. Signal Proc. 46 (1998), 1558–1570.

    Article  Google Scholar 

  58. X. G. Xia, D. P. Hardin, J. S. Geronimo, B. Suter: Design of prefilters for discrete multiwavelet transforms, IEEE Trans. Signal Proc. 44 (1996), 25–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Chui, C.K., Jiang, Q. (2003). Multivariate Balanced Vector-Valued Refinable Functions. In: Haussmann, W., Jetter, K., Reimer, M., Stöckler, J. (eds) Modern Developments in Multivariate Approximation. International Series of Numerical Mathematics, vol 145. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8067-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8067-1_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9427-2

  • Online ISBN: 978-3-0348-8067-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics