Skip to main content

The Mode of Action of MAO-B Inhibitors

  • Chapter
Inhibitors of Monoamine Oxidase B

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Monoamine oxidase (EC 1.4.3.4; amine: oxygen oxidoreductase (deaminating; flavin-containing) (MAO) is an enzyme of the outer mitochondrial membrane and catalyzes the oxidative deamination of amines according to the overall equation

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaschko H. Amine oxidase and amine metabolism. Pharmac Rev 1952; 4: 415–53.

    Google Scholar 

  2. De Varebeke PJ, Cavalier R, David-Remacle M, Youdim MBH. Formation of the neurotransmitter glycine from the anticonvulsant milacemide is mediated by brain monoamine oxidase B. J Neurochem 1988; 50: 1011–16.

    Article  Google Scholar 

  3. Chiba K, Trevor A, Castagnoli Jr N. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 1984; 120: 574–78.

    Article  Google Scholar 

  4. Heikkila RE, Manzino L, Cabbat FS, Duvoisin RS. Protection against the dopaminergic neurotoxicity of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 1984; 311: 467–9.

    Article  Google Scholar 

  5. May T, Strauss S, Rommelspacher H. [3H]Harman labels selectively and with high affinity the active site of monoamine oxidase (EC 1.4.3.4) subtype A (MAO-A) in rat, marmoset, and pig. J Neural Transm [Supplement] 1990; 32: 93–102.

    Google Scholar 

  6. Dostert PL, Strolin-Benedetti M, Tipton KF. Interactions of monoamine oxidase with substrates and inhibitors. Med Res Rev 1990; 9: 45–89.

    Article  Google Scholar 

  7. Youdim MBH, Finberg JPM, Tipton KF. Monoamine oxidase. In: Trendelenburg U, Weiner N, editors. Catecholamines I, handbook of experimental pharmacology, Vol 90/1. Berlin Heidelberg New York: Springer-Verlag, 1988: 119–92.

    Google Scholar 

  8. Johnston JP. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 1968; 17: 1285–97.

    Article  Google Scholar 

  9. Fowler CJ, Callingham BA, Mantle TJ, Tipton KF. Monoamine oxidase A and B: a useful concept? Biochem Pharmacol 1978; 27: 97–101.

    Article  Google Scholar 

  10. Tipton KF, Fowler CJ, Houslay MD. Specifities of the two forms of monoamine oxidase. In: Kamijo K, Usdin E, Nagatsu T, editors. Monoamine oxidase. Amsterdam: Oxford, Princeton: Excerpta Medica, 1982: 87–99.

    Google Scholar 

  11. Kinemuchi H, Fowler CJ, Tipton KF. Substrate specifities of the two forms of monoamine oxidase. In: Tipton KF, Dostert PL, Strolin-Benedetti M, editors. Monoamine oxidase and disease. London New York: Academic Press, 1984: 53–62.

    Google Scholar 

  12. O’Carroll AM, Fowler CJ, Phillips JP, Tobia I, Tipton KF. The deamination of dopamine by human brain monoamine oxidase: specificity for the two enzyme forms in seven brain regions. Naunyn-Schmiedeberg’s Arch Pharmacol 1983; 322: 198–202.

    Article  Google Scholar 

  13. Riederer P, Youdim MBH. Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with l-deprenyl. J Neurochem 1986; 46: 1359–65.

    Article  Google Scholar 

  14. Denney RM, Patel NT, Fritz RR, Abell CW. A monoclonal antibody elicited to human platelet monoamine oxidase, isolation and specificity for human monoamine oxidase B but not A. Mol Pharmacol 1982; 22: 500–8.

    Google Scholar 

  15. Konradi C, Kornhuber J, Froelich L, Fritze J, Heinsen H, Beckmann H et al. Demonstration of monoamine oxidase-A and B in the human brainstem by a histochemical technique. Neuroscience 1989; 33: 383–400.

    Article  Google Scholar 

  16. Konradi C, Svoma E, Jellinger K, Riederer P, Denney RM, Thibault J. Topographic immunocytochemical mapping of monoamine oxidase-A, monoamine oxidase-B and tyrosine hydroxylase in human post mortem brain stem. Neuroscience 1988; 26: 791–802.

    Article  Google Scholar 

  17. Bach AWJ, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW et al. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 1988; 85: 4934–8.

    Article  Google Scholar 

  18. Bach AWJ, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW et al. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Neurobiology 1988; 85: 4934–38.

    Google Scholar 

  19. Lan NC, Chan C, Shih J. Expression of functional human monoamine oxidase A and B cDNAs in mammalian cells. J Neurochem 1989; 52: 1652–54.

    Article  Google Scholar 

  20. Rando RR. Chemistry and enzymology of kcat inhibitors. Science 1974; 185: 320–4.

    Article  Google Scholar 

  21. Singer TP. Active site-directed irreversible inhibitors of monoamine oxidase. In: Singer TP, von Korf, RW, Murphy DL, editors. Monoamine oxidase: structure, function, and altered functions. New York: Academic Press, 1979: 7–24.

    Google Scholar 

  22. Tipton KF, Fowler CJ. The kinetics of monoamine oxidase inhibitors in relation to their clinical behaviour. In: Tipton KF, Dostert PL, Strolin-Benedetti M, editors. Monoamine oxidase and disease. London New York: Academic Press, 1984: 27–40.

    Google Scholar 

  23. Gerlach M, Riederer P, Youdim MBH. The molecular pharmacology of l-deprenyl. European J Pharmacol [Molec Pharamacol Sect.] 1992; 226: 97–108.

    Article  Google Scholar 

  24. Schmauss M, Erfurth A. Indikationen für eine Therapie mit MAO-Hemmern. Psychiat Prax [Sonderheft] 1989; 16: 2–6.

    Google Scholar 

  25. Crane GE. Iproniazid (Marsilid) phosphate, a therapeutic agent for mental disorders and debilitating disease. Psychiat Res Rep 1957; 8: 142–52.

    Google Scholar 

  26. Kline DF. Clinical experience with iproniazid (Marsilid). J Clin Exp Psychopathol [Supplement] 1958; 1: 72–8.

    Google Scholar 

  27. Blackwell B, Marley E, Price J, Taylor D. Interactions with cheese and its constituents with monoamine oxidase inhibitors. Br J Psychiat 1967; 113: 349–65.

    Article  Google Scholar 

  28. Youdim MBH, Finberg JPM. MAO type-B inhibitors as adjunct to L-dopa therapy. In: Yahr MD, Bergmann KJ, editors. Advances in Neurology, Vol 45. New York: Raven Press, 1986: 127–36.

    Google Scholar 

  29. Kalir A, Sabbagh A, Youdim MBH. Selective acetylenic ‘suicide’ and reversible inhibitors of monoamine oxidase types A and B. Br J Pharmacol 1981; 73: 55–64.

    Article  Google Scholar 

  30. Dollery CT, Davies DS, Strolin-Benedetti M. Clinical pharmacology of MD 780515, a selective and reversible MAO-A inhibitor. In: Kamijo K, Usdin E, Nagatsu T, editors. Monoamine oxidase, basic and clinical frontiers. Amsterdam: Excerpta Medica, 1982: 221–9.

    Google Scholar 

  31. Knoll J. The pharmacology of (—)-deprenyl. J Neural Transm [Supplement] 1986; 22: 75–89.

    Google Scholar 

  32. Palfreyman MG, Zreika M, McDonald I, Fozard J, Bey P. MDL 72,145, an irreversible inhibitor of MAO-B. In: Tipton KF, Dostert P, Strolin-Benedetti M, editors. Monoamine oxidase and disease. London: Academic Press, 1986: 563–4.

    Google Scholar 

  33. Keller HH, Kettler R, Keller G, Da Prada M. Short-acting novel MAO inhibitors: in vitro evidence for the reversibility of MAO inhibition by moclobemide and Ro 16–6491. Naunyn-Schmiedeberg’s Arch Pharmacol 1987; 335: 15–20.

    Google Scholar 

  34. Da Prada M, Kettler R, Keller HH, Burkard WP. Ro 19–6327, a reversible, highly selective inhibitor of type-B monoamine oxidase, completely devoid of tyramine-potenti-ating effects: comparison with selegiline. Neurol Neurobiol 1988; 42B: 359–63.

    Google Scholar 

  35. Da Prada M, Kettler R, Zürcher G, Kettler HH. Hemmer der MAO-B und COMT: Möglichkeiten ihrer Anwendung bei der Parkinson-Therapie aus heutiger Sicht. In: Fischer P-A, editor. Modifizierende Faktoren bei der Parkinson-Therapie. Basel: Edi-tiones (Roche), 1988: 309–22.

    Google Scholar 

  36. Zreika M, Fozard JR, Dudley MW, Bey Ph, McDonald IA, Palfreyman MG. MDL 72,974: a potent and selective enzyme-activated irreversible inhibitor of monoamine oxidase type B with potential for use in Parkinson’s disease. J Neural Transm [P-D Sect.] 1989; 1: 243–54.

    Article  Google Scholar 

  37. Birkmayer W, Riederer P, Youdim MBH, Linauer W. The potentiation of the anti-akinetic effect after L-dopa-treatment by an inhibitor of MAO-B, deprenyl. J Neural Transm 1975; 36: 303–26.

    Article  Google Scholar 

  38. Riederer P, Przuntek H, editors. MAO-B-inhibitor selegiline (R-(—)-deprenyl). A new therapeutic concept in the treatment of Parkinson’s disease. Vienna New York: Springer-Verlag, 1987.

    Google Scholar 

  39. Golbe LI. Deprenyl as symptomatic therapy in Parkinson’s disease. Clinical Neuropharmacology 1988; 11: 387–400.

    Article  Google Scholar 

  40. Tariot PN, Sunderland T, Weingartner H, Murphy DL, Welkowitz JA, Thompson K et al. Cognitive effects of l-deprenyl in Alzheimer’s disease. Psychopharmacology 1987; 91: 489–95.

    Article  Google Scholar 

  41. Mangoni A, Grassi MP, Frattola L, Piolti R, Bassi S, Motta A et al. Effects of a MAO-B inhibitor in the treatment of Alzheimer disease. Eur Neurol 1991; 31: 100–7.

    Article  Google Scholar 

  42. Youdim MBH, Finberg JPM. Monoamine oxidase ‘inhibitor antidepressants. In: Grahame-Smith DG, Hippius H, Winokur G, editors. Psychopharmacology 1/1. Amsterdam: Excerpta Medica, 1982: 37–51.

    Google Scholar 

  43. Jossan SS, d’Argy R, Gillberg PG, Aquilonius SM, Langström B, Halldin C et al. Localization of monoamine oxidase B in human brain by autoradiographical use of 11C-labelled l-deprenyl. J Neural Transm 1989; 77: 55–64.

    Article  Google Scholar 

  44. Riederer P, Jellinger K, Seemann D. Monoamine oxidase and parkinsonism. In: Tipton KF, Dostert P, Strolin-Benedetti M, editors. Monoamine oxidase and disease. London New York: Academic Press, 1984: 403–15.

    Google Scholar 

  45. Moll G, Moll R, Riederer P, Heinsen H, Denney RM. Distribution pattern of MAO-A and MAO-B in human substantia nigra shown by immunofluorescence cytochemistry on thin frozen section. Pharm Res Comm [Supplement 4] 1988; 20: 80–90.

    Google Scholar 

  46. Moll G, Moll R, Riederer P, Gsell W, Heinsen H, Denney RM. Immunofluorescence cytochemistry on thin sections of human substantia nigra for staining of monoamine oxidase A and monoamine oxidase B: a pilot study. J Neural Transm [Supplement] 1990; 32: 67–77.

    Google Scholar 

  47. Tipton KF, Dostert P, Strolin-Benedetti M, editors. Monoamine oxidase and disease: prospects for therapy with reversible inhibitors. London: Academic Press, 1984.

    Google Scholar 

  48. Tipton KF, Houslay MD, Garrett N. Allotropie properties of human brain monoamine oxidase. Nature 1973: 246: 213–4.

    Google Scholar 

  49. Glover V, Sandler M, Owen F, Riley GJ. Dopamine is a monoamine oxidase-B substrate in man. Nature 1977; 265: 80–1.

    Article  Google Scholar 

  50. Roth JA, Feor K. Deamination of dopamine and its 3-O-methylated derivative by human brain monoamine oxidase. Biochem Pharmacol 1978; 27: 1616–23.

    Google Scholar 

  51. Glover V, Elsworth JD, Sandler M. Dopamine oxidation and its inhibition by (—)-deprenyl. J Neural Transm [Supplement] 1980; 16: 163–71.

    Google Scholar 

  52. Garrick NA, Murphy DL. Differences in the preferential deamination of L-nor-epinephrine, dopamine and serotonin by MAO in rodent and primate brain. In: Usdin E, Weiner N, Youdim MBH, editors. Function and regulation of monoamine enzymes. London: Macmillan, 1981: 517–28.

    Google Scholar 

  53. O’Carroll A-M, Bardsley ME, Tipton KF. The oxidation of adrenaline and noradrenaline by the two forms of monoamine oxidase from human and rat brain. Neurochem Int 1986; 8: 493–500.

    Article  Google Scholar 

  54. Paterson I A, Juorio AV, Boulton AA. 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J Neurochem 1990; 55: 1827–37.

    Article  Google Scholar 

  55. Seiler N, Al-Therib MJ. Putrescine catabolism in mammalian brain. Biochem J 1974; 144: 29–35.

    Google Scholar 

  56. Seiler N. Polyamine metabolism and function in brain. Neurochem Int 1981; 3: 95–110.

    Article  Google Scholar 

  57. Zappia V, Pegg AE, editors. Progress in polyamine research. New York: Plenum Press, 1988.

    Google Scholar 

  58. Seiler N, Knödgen B. High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J Chromatogr 1980; 221: 227–35.

    Article  Google Scholar 

  59. Cohen G, Pasik P, Cohen B, Leist A, Mytilineou C, Yahr MD. Pargyline and deprenyl prevent the neurotoxicity of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in monkeys. European J Pharmacol 1984; 106: 209–10.

    Article  Google Scholar 

  60. Langston JW, Irwin I, Langston EB, Forno LS. Pargyline prevents MPTP-induced parkinsonism in primates. Science 1984; 225: 1480–82.

    Article  Google Scholar 

  61. Markey JP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA. Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonsim. Nature 1984; 311:464–7.

    Article  Google Scholar 

  62. Knoll J. R-(—)-deprenyl (Selegiline, MoverganR) facilitates the activity of the nigrostri- atal dopaminergic neuron. J Neural Transm [Supplement] 1987; 25: 45–66.

    Google Scholar 

  63. Gibson C. Inhibition of MAO B, but not MAO A, blocks DSP-4 toxicity on central NE neurons. European J Pharmacol 1987; 141: 135–8.

    Article  Google Scholar 

  64. Finnegan KT, Skratt J J, Irwin I, DeLanney LE, Langston JW. Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. European J Pharmacol 1990; 184: 119–26.

    Article  Google Scholar 

  65. Tatton WG, Greenwood CE. Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 1991; 30: 666–72.

    Article  Google Scholar 

  66. Heikkila RE, Cohen G. Further studies on generation of hydrogen peroxide by 6-hydroxy- dopamine: potentiation by ascorbic acid. Mol Pharmacol 1972; 8: 241–8.

    Google Scholar 

  67. Sachs CH, Johnsson G. Mechanism of action of 6-hydroxydopamine. Pharmacology 1975; 24: 1–25.

    Google Scholar 

  68. Graham DG, Tiffany SM, Bell WR, Gutknecht WF. Autooxidation versus covalent binding quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine and related compounds towards CI300 neuroblastoma cells in vitro. Mol Pharmacol 1978; 14: 644–53.

    Google Scholar 

  69. Monterio HP, Winterbourn CC. 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 1989; 38: 4177–82.

    Article  Google Scholar 

  70. Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH. The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 1991; 56: 1441–5.

    Article  Google Scholar 

  71. Ben-Shachar D, Youdim MBH. Intranigral iron injection induces behavioural and biochemical “parkinsonism” in the rat. J Neurochem 1991; 57: 2133–5.

    Article  Google Scholar 

  72. Gerlach M, Riederer P, Przuntek H, Youdim MBH. MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. European J Pharmacol [Molec Pharmacol Sect.] 1991; 208: 273–86.

    Article  Google Scholar 

  73. Knoll J. The pharmacology of (—)-deprenyl. J Neural Transm [Supplement] 1986; 22: 75–89.

    Google Scholar 

  74. Cohen G. The pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence. J Neural Transm [Supplement] 1983; 19: 89–103.

    Google Scholar 

  75. Cohen G, Spina MB. Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 1989; 26: 689–90.

    Article  Google Scholar 

  76. Knoll J. The striatal dopamine dependency of life span in male rats, longevity study with (—)deprenyl. Mech Ageing Dev 1988; 46: 237–62.

    Article  Google Scholar 

  77. Carrillo M-C, Kanai S, Nokubo M, Kitani K. (—)-Deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci 1991; 48: 517–21.

    Article  Google Scholar 

  78. Clow A, Hussain T, Glover V, Sandler M, Dexter DT, Walker M. (—)-Deprenyl can induce soluble superoxide dismutase in rat striata. J. Neural Transm [Gen Sect.] 1991; 86: 77–80.

    Article  Google Scholar 

  79. Perumal AS, Tordzro WK, Katz M, Jackson-Lewis V, Cooper TB, Fahn S et al. Regional effects of 6-hydroxydopamine (6-OHDA) on free radical scavengers in rat brain. Brain Res 1989; 504: 139–44.

    Article  Google Scholar 

  80. Lodge D, Collingridge GL. The pharmacology of excitatory amino acids. Trends in Pharmacological Sciences, a special report. Cambridge: Elsevier, 1991.

    Google Scholar 

  81. Da Prada M, Kettler R, Burkhard WP, Lore HP, Haefely W. Some basic aspects of reversible inhibitors of monoamine oxidase-A. Acta Psychiatr Scand [Supplement] 1990; 360: 7–12.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Gerlach, M., Riederer, P., Youdim, M.B.H. (1993). The Mode of Action of MAO-B Inhibitors. In: Szelenyi, I. (eds) Inhibitors of Monoamine Oxidase B. Milestones in Drug Therapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6348-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6348-3_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6349-0

  • Online ISBN: 978-3-0348-6348-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics