Skip to main content

An Algorithmic Implementation of the Generalized Christoffel Theorem

  • Chapter
Numerical Integration

Abstract

Let dλ(t) be a nonnegative measure on some interval I ⊂ ℝ, with λ(t) having infinitely many points of increase, and assume that all moments \({\mu _r} = \int {_I{t^t}d\lambda (t)} \) exist, with μ0 > 0. Let πn(t) = πn (t;dλ), n = 0, 1, 2,..., be the associated system of (monic) orthogonal polynomials. Given two polynomials \(u(t) = \pm \mathop \prod \limits_{\lambda = 1}^\ell (t - {u_\lambda }),v(t) = \mathop \prod \limits_{\mu = 1}^m (t - {v_\mu })\), with pairwise distinct roots, and such that [u(t)/v(t)]dλ(t) is nonnegative on I and has finite moments of all orders, the generalized Christoffel theorem expresses the orthogonal polynomials relative to the measure [u(t)/v(t)]dλ(t) in determinantal form in terms of the polynomials {πn}. Assuming, for example, that m ≤ n, one has

$$u(t){\Pi _n}(t;\frac{u}{v}d\lambda ) = const. \times $$

where

$$\left| \begin{gathered}{\pi _{n - m}}(t) \cdots {\pi _{n - 1}}(t){\pi _n}(t){\pi _{n + 1}}(t) \cdots {\pi _{n + \ell }}(t) \hfill \\{\pi _{n - m}}({u_1}) \cdots {\pi _{n - 1}}({u_1}){\pi _n}({u_1}){\pi _{n + 1}}({u_1}) \cdots {\pi _{n + \ell }}({u_1}) \hfill \\\ldots .................... \hfill \\{\pi _{n - m}}({u_\ell }) \cdots {\pi _{n - 1}}({u_\ell }){\pi _n}({u_\ell }){\pi _{n + 1}}({u_\ell }) \cdots {\pi _{n + \ell }}({u_\ell }) \hfill \\{\rho _{n - m}}({v_1}) \cdots {\rho _{n - 1}}({v_1}){\rho _n}({v_1}){\rho _{n + 1}}({v_1}) \cdots {\rho _{n + \ell }}({v_1}) \hfill \\\ldots .................... \hfill \\{\rho _{n - m}}({v_m}) \cdots {\rho _{n - 1}}({v_m}){\rho _n}({v_m}){\rho _{n + 1}}({v_m}) \cdots {\rho _{n + \ell }}({v_m}) \hfill \\\end{gathered} \right|$$
((1.1))

.

Sponsored in part by the National Science Foundation under grant MCS-7927158.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CHIHARA, T.S. An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.

    Google Scholar 

  2. CHRISTOFFEL, E.B. Über die Gaußische Quadratur und eine Verallgemeinerung derselben, J. Reine Angew. Math. 55 (1858), 61–82. [Ges. Math. Abhandlungen I, 65–87.]

    Article  Google Scholar 

  3. GALANT, D. An implementation of Christoffel’s theorem in the theory of orthogonal polynomials, Math. Comp. 25 (1971), 111–113.

    Google Scholar 

  4. GAUTSCHI, W. Minimal solutions of three-term recurrence relations and orthogonal polynomials, Math. Comp. 36 (1981), 547–554.

    Article  Google Scholar 

  5. GOLUB, G.H. and WELSCH, J.H. Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221–230.

    Article  Google Scholar 

  6. LETHER, F.G. Modified quadrature formulas for functions with nearby poles, J. Comput. Appl. Math. 3 (1977), 3–9.

    Article  Google Scholar 

  7. STIEFEL, E.L. Kernel polynomials in linear algebra and their numerical applications, in “Further Contributions to the Solution of Simultaneous Linear Equations and the Determination of Eigenvalues”, NBS Applied Math. Ser. 49 (1958), pp. 1–22.

    Google Scholar 

  8. UVAROV, V.B. Relation between polynomials orthogonal with different weights (Russian), Dokl. Akad. Nauk SSSR 126 (1959), 33–36.

    Google Scholar 

  9. UVAROV, V.B. The connection between systems of polynomials that are orthogonal with respect to different distribution functions (Russian), Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1253–1262. [English translation in U.S.S.R. Computational Math, and Phys. 9 (1969), No. 6, 25–36.]

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Basel AG

About this chapter

Cite this chapter

Gautschi, W. (1982). An Algorithmic Implementation of the Generalized Christoffel Theorem. In: Hämmerlin, G. (eds) Numerical Integration. ISNM 57: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 57. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6308-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6308-7_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6309-4

  • Online ISBN: 978-3-0348-6308-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics