Skip to main content

A Review of Sustainable Materials Used in Thermoplastic Extrusion and Powder Bed Melting Additive Manufacturing

  • Conference paper
  • First Online:
Advances in Manufacturing, Production Management and Process Control (AHFE 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1216))

Included in the following conference series:

Abstract

There has been a growing interest in additive manufacturing (AM) in the past decades due to its non-traditional approach of making products. One important area in the body of knowledge of AM is focused on utilization of polymers for the manufacturing of unique and competitive components when compared to traditional manufacturing. Recently bioplastics that are more sustainable, such as polylactic acid (PLA), cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP), nylon 11, and polycaprolactone (PCL) have started to gain traction as a competitor to these traditional plastics. Thus, there is a large amount of relevant publications that combine material development and characterization suitable for AM, components manufacturing based on materials developed and product characterization. This paper presents a comprehensive review of the most relevant publications that integrates past and current biopolymers development for AM, 3D printed components advantages and challenges using the developed biopolymers, and materials and product testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calignano, F., Manfredi, D., Ambrosio, E.P., Biamino, S., Lombardi, M., Atzeni, E., et al.: Overview on additive manufacturing technologies. In: Proceedings of the IEEE 2017 April, vol. 105, no. 4, pp. 593–612 (2017)

    Google Scholar 

  2. Huang, S.H., Liu, P., Mokasdar, A., Hou, L.: Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Technol. 67, 1191–1203 (2013)

    Article  Google Scholar 

  3. Holmstrm, J., Partanen, J., Tuomi, J., Walter, M.: Rapid manufacturing in the spare parts supply chain: alternative approaches to capacity deployment. J. Manuf. Technol. Manag. 21, 687–697 (2010)

    Article  Google Scholar 

  4. Khajavi, S.H., Partanen, J., Holmström, J.: Additive manufacturing in the spare parts supply chain. Comput. Ind. 65, 50–63 (2014)

    Article  Google Scholar 

  5. Goodship, V., Middleton, B., Cherrington, R.: Design and Manufacture of Plastic Components for Multifunctionality Electronic Resource: Structural Composites, Injection Molding, and 3D Printing. William Andrew, Amsterdam (2016)

    Google Scholar 

  6. Yang, Y., Chen, X., Lu, N., Gao, F.: Injection Molding Process Control, Monitoring, and Optimization Electronic Resource. Hanser Publishers, Munich (2017)

    Google Scholar 

  7. Lunt, J.: Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. Degrad. Stab. 59, 145–152 (1998)

    Article  Google Scholar 

  8. Álvarez-Chávez, C.R., Edwards, S., Moure-Eraso, R., Geiser, K.: Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J. Clean. Prod. 23, 47–56 (2012)

    Article  Google Scholar 

  9. Mülhaupt, R.: Green polymer chemistry and bio-based plastics: dreams and reality. Macromol. Chem. Phys. 214, 159–174 (2013)

    Article  Google Scholar 

  10. Saloni, D., Nicole, M.: Investigation of bioplastics for additive manufacturing. In: International Conference on Applied Human Factors and Ergonomics. Springer, Cham (2019)

    Google Scholar 

  11. Mathew, A.P., Oksman, K., Sain, M.: Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J. Appl. Polym. Sci. 97, 2014–2025 (2005)

    Article  Google Scholar 

  12. Siracusa, V., Rocculi, P., Romani, S., Dalla Rosa, M.: Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol. 19, 634–643 (2008)

    Article  Google Scholar 

  13. Kulich, D.M., Gaggar, S.K., Lowry, V., Stepien, R.: Acrylonitrile–Butadiene–Styrene Polymers. Wiley Online Library (2002)

    Google Scholar 

  14. Auras, R.: Poly (Lactic Acid). Wiley Online Library (2010)

    Google Scholar 

  15. Casavola, C., Cazzato, A., Moramarco, V., Pappalettera, G.: Preliminary study on residual stress in FDM parts. In: Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, vol. 9, pp. 91–96. Springer, Cham (2017)

    Google Scholar 

  16. Wittbrodt, B., Pearce, J.M.: The effects of PLA color on material properties of 3-D printed components. Addit. Manuf. 8, 110–116 (2015)

    Google Scholar 

  17. ColorFabb - ColorFabb Online Store - 3D Printing Filament. https://colorfabb.com/. Accessed 2017

  18. Pilla, S.: Handbook of Bioplastics and Biocomposites Engineering Applications. Wiley/Scrivener Publishing, Hoboken/Salem (2011)

    Google Scholar 

  19. Laser Sintering | 3D Printing Materials | Stratasys Direct Mfg. https://www.stratasysdirect.com/technologies/direct-metal-laser-sintering. Accessed 2017

  20. Herzog, B., Kohan, M.I., Mestemacher, S.A., Pagilagan, R.U., Redmond, K.: Polyamides, Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA (2000)

    Google Scholar 

  21. Jiang, Y., Chen, Y., Zheng, X.: Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process. Environ. Sci. Technol. 43, 7734–7741 (2009)

    Article  Google Scholar 

  22. Albuquerque, M., Concas, S., Bengtsson, S., Reis, M.: Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection. Bioresour. Technol. 101, 7112–7122 (2010)

    Article  Google Scholar 

  23. Pereira, T.F., Oliveira, M.F., Maia, I.A., Silva, J.V.L., Costa, M.F., Thire, R.: 3D printing of poly(3-hydroxybutyrate) porous structures using selective laser sintering. In: Macromolecular Symposia, vol. 319 (2012)

    Google Scholar 

  24. Peterson, G.I., Yurtoglu, M., Larsen, M.B., Craig, S.L., Ganter, M.A., Storti, D.W., et al.: Additive manufacturing of mechanochromic polycaprolactone on entry-level systems. Rapid Prototyping J. 21, 520–527 (2015)

    Article  Google Scholar 

  25. Kinstlinger, I.S., Bastian, A., Paulsen, S.J., Hwang, D.H., Ta, A.H., Yalacki, D.R., et al.: Open-source selective laser sintering (OpenSLS) of Nylon and biocompatible polycaprolactone. PLoS One 11, e0147399 (2016)

    Article  Google Scholar 

  26. Zein, I., Hutmacher, D.W., Tan, K.C., Teoh, S.H.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002)

    Article  Google Scholar 

  27. Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014)

    Article  Google Scholar 

  28. Le Duigou, A., Castro, M., Bevan, R., Martin, N.: 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater. Des. 96, 106–114 (2016)

    Article  Google Scholar 

  29. Melocchi, A., Parietti, F., Loreti, G., Maroni, A., Gazzaniga, A., Zema, L.: 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J. Drug Deliv. Sci. Technol. 30, Part B, 360–367 (2015)

    Google Scholar 

  30. Azimi, P., Zhao, D., Pouzet, C., Crain, N.E., Stephens, B.: Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ. Sci. Technol. 50, 1260–1268 (2016)

    Article  Google Scholar 

  31. Deng, Y., Cao, S., Chen, A., Guo, Y.: The impact of manufacturing parameters on submicron particle emissions from a desktop 3D printer in the perspective of emission reduction. Build. Environ. 104, 311–319 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Saloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mervine, N., Brӓtt, K., Saloni, D. (2020). A Review of Sustainable Materials Used in Thermoplastic Extrusion and Powder Bed Melting Additive Manufacturing. In: Mrugalska, B., Trzcielinski, S., Karwowski, W., Di Nicolantonio, M., Rossi, E. (eds) Advances in Manufacturing, Production Management and Process Control. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1216. Springer, Cham. https://doi.org/10.1007/978-3-030-51981-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51981-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51980-3

  • Online ISBN: 978-3-030-51981-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics