Skip to main content

SoftFRAC - Matlab Library for Realization of Fractional Order Dynamic Elements

  • Conference paper
  • First Online:
Book cover Advanced, Contemporary Control

Abstract

Nowadays, a realization of non-integer (fractional) order elements on a digital platform is a widely researched problem. The theory of such dynamic components is relatively well grounded. However, many problems of implementation on a digital platform are still open. Popular methods of implementation completely fail when used in real-time control applications. A need for efficient, numerically robust and stable implementation is obvious. These types of controllers and filters can be used in areas like telemedicine, biomedical engineering, signal processing, control, and many others. In this paper, the authors present the basic level of preliminary implementation of Matlab library for a realization of fractional order dynamic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bania, P., Baranowski, J.: Laguerre polynomial approximation of fractional order linear systems. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.) Advances in the Theory and Applications of Non-integer Order Systems: 5th Conference on Non-integer Order Calculus and Its Applications, Cracow, Poland, pp. 171–182. Springer (2013)

    Google Scholar 

  2. Bania, P., Baranowski, J., Zagórowska, M.: Convergence of Laguerre impulse response approximation for non-integer order systems. Math. Prob. Eng. 2016, 13 (2016). https://doi.org/10.1155/2016/9258437. Article ID 9258437

    Article  MATH  Google Scholar 

  3. Baranowski, J.: Quadrature based approximations of non-integer order integrator on finite integration interval. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, vol. 407, pp. 11–20. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-45474-0_2

  4. Baranowski, J., Bauer, W., Zagórowska, M.: Stability properties of discrete time-domain oustaloup approximation. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and Applications of Non-Integer Order Systems, Lecture Notes in Electrical Engineering, vol. 357, pp. 93–103. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-23039-9_8

  5. Baranowski, J., Bauer, W., Zagórowska, M., Dziwiński, T., Piątek, P.: Time-domain Oustaloup approximation. In: 2015 20th International Conference On Methods and Models in Automation and Robotics (MMAR), pp. 116–120. IEEE (2015)

    Google Scholar 

  6. Baranowski, J., Zagórowska, M.: Quadrature based approximations of non-integer order integrator on infinite integration interval. In: 2016 21st International Conference On Methods and Models in Automation and Robotics (MMAR) (2016)

    Google Scholar 

  7. Bauer, W., Baranowski, J., Dziwiński, T., Piątek, P., Zagórowska, M.: Stabilisation of magnetic levitation with a PI\(^{\lambda }\)D\(^{\mu }\) controller. In: 2015 20th International Conference On Methods and Models in Automation and Robotics (MMAR), pp. 638–642. IEEE (2015)

    Google Scholar 

  8. De Keyser, R., Muresan, C., Ionescu, C.: An efficient algorithm for low-order direct discrete-time implementation of fractional order transfer functions. ISA Trans. 74, 229–238 (2018)

    Article  Google Scholar 

  9. Kapoulea, S., Psychalinos, C., Elwakil, A.: Single active element implementation of fractional-order differentiators and integrators. AEU - Int. J. Electron. Commun. 97, 6–15 (2018)

    Article  Google Scholar 

  10. Kawala-Janik, A., Bauer, W., Al-Bakri, A., Haddix, C., Yuvaraj, R., Cichon, K., Podraza, W.: Implementation of low-pass fractional filtering for the purpose of analysis of electroencephalographic signals. Lect. Notes Electr. Eng. 496, 63–73 (2019)

    Article  MathSciNet  Google Scholar 

  11. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order systems and controls: Fundamentals and applications. Advances in Industrial Control. Springer-Verlag, London (2010)

    Book  Google Scholar 

  12. Monteghetti, F., Matignon, D., Piot, E.: Time-local discretization of fractional and related diffusive operators using gaussian quadrature with applications. Appl. Numer. Math. (2018)

    Google Scholar 

  13. Mozyrska, D., Wyrwas, M.: Stability of linear systems with Caputo fractional-, variable-order difference operator of convolution type (2018)

    Google Scholar 

  14. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  15. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Nonlinear Physical Science. Springer (2011)

    Google Scholar 

  16. Piątek, P., Zagórowska, M., Baranowski, J., Bauer, W., Dziwiński, T.: Discretisation of different non-integer order system approximations. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 429–433. IEEE (2014)

    Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering. Elsevier Science (1998)

    Google Scholar 

  18. Rydel, M., Stanisławski, R., Latawiec, K., Gałek, M.: Model order reduction of commensurate linear discrete-time fractional-order systems. IFAC-PapersOnLine 51(1), 536–541 (2018)

    Article  Google Scholar 

  19. Stanisławski, R., Latawiec, K.J., Gałek, M., Łukaniszyn, M.: Modeling and identification of fractional-order discrete-time laguerre-based feedback-nonlinear systems. In: Latawiec, K.J., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-integer-Order Systems, Lecture Notes in Electrical Engineering, vol. 320, pp. 101–112. Springer International Publishing (2015)

    Google Scholar 

  20. Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: a MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2, 51–62 (2011)

    Google Scholar 

  21. Trigeassou, J., Maamri, N., Sabatier, J., Oustaloup, A.: State variables andtransients of fractional order differential systems. Comput. Math. Appl. 64(10), 3117–3140 (2012). https://doi.org/10.1016/j.camwa.2012.03.099. http://www.sciencedirect.com/science/article/pii/S0898122112003173. Advances in FDE, III

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

Work partially realized in the project “Development of efficient computing software for simulation and application of non-integer order systems”, financed by National Centre for Research and Development with TANGO programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bauer, W., Baranowski, J., Piątek, P., Grobler-Dębska, K., Kucharska, E. (2020). SoftFRAC - Matlab Library for Realization of Fractional Order Dynamic Elements. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_99

Download citation

Publish with us

Policies and ethics