Skip to main content

A New Fuzzy Logic Decoupling Scheme for TITO Systems

  • Conference paper
  • First Online:
Book cover Advanced, Contemporary Control

Abstract

In the paper fuzzy logic methods for dynamic decoupling of multi-input multi-output (MIMO) dynamical systems are analysed. A structure of the fuzzy precompensator, which may be used instead classical ideal and inverted decoupling control schemes, is presented. The proposal is illustrated by series of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arousi, F.: Predictive control algorithms for linear and nonlinear processes. Ph.D. thesis, Budapest, Hungary (2009)

    Google Scholar 

  2. Bańka, S., Dworak, P., Jaroszewski, K.: Design of a multivariable neural controller for control of a nonlinear MIMO plant. Int. J. Appl. Math. Comput. Sci. 24(2), 357–369 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bristol, E.H.: On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control AC 11, 133–134 (1966). https://doi.org/10.1109/TAC.1966.1098266

    Article  Google Scholar 

  4. Chiu, Ch.-S.: A dynamic decoupling approach to robust T-S fuzzy model-based control. IEEE Trans. Fuzzy Syst. 22(5) 1088–1100 (2014). https://doi.org/10.1109/TFUZZ.2013.2280145

  5. Dworak, P.: Squaring down plant model and I/O grouping strategies for a dynamic decoupling of left-invertible MIMO plants. Bull. Pol. Acad. Sci. 62(3), 471–479 (2014). https://doi.org/10.2478/bpasts-2014-0050

    Article  Google Scholar 

  6. Dworak, P.: A type of fuzzy T-S controller for a nonlinear MIMO dynamic plant. Elektronika ir Elektrotechnika 20(5), 8–14 (2014). https://doi.org/10.5755/j01.eee.20.5.7091

    Article  Google Scholar 

  7. Dworak, P., Brasel, M.: Improving quality of regulation of a nonlinear MIMO dynamic plant. Elektronika ir Elektrotechnika 19(7), 3–6 (2013)

    Article  Google Scholar 

  8. Dworak, P., Goyal, J.K., Aggarwal, S., Ghosh, S.: Effective use of MPC for dynamic decoupling of MIMO systems. Elektronika ir Elektrotechnika 25(2), 3–8 (2019)

    Article  Google Scholar 

  9. Galindo, R.: Input/output decoupling of square linear systems by dynamic two-parameter stabilizing control. Asian J. Control 18(6), 2310–2316 (2016). https://doi.org/10.1002/asjc.1285

    Article  MathSciNet  MATH  Google Scholar 

  10. Garrido, J., Vazquez, F., Morilla, F.: An extended approach of inverted decoupling. J. Process Control 21(1), 55–68 (2011)

    Article  Google Scholar 

  11. Garrido, J., Vazquez, F., Morilla, F.: Centralized inverted decoupling control. Ind. Eng. Chem. Res. 52(23), 7854–7866 (2013)

    Article  Google Scholar 

  12. Hamdy, M., Ramadan, A.: Design of Smith predictor and fuzzy decoupling for MIMO chemical processes with time delays. Asian J. Control 19(1), 57–66 (2017). https://doi.org/10.1002/asjc.1338

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamdy, M., Ramadan, A., Abozalam, B.: Comparative study of different decoupling schemes for for TITO binary distillation column via PI controller. IEEE/CAA J. Autom. Sin. 5(4), 869–877 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hamdy, M., Ramadan, A., Abozalam, B.: A novel inverted fuzzy decoupling scheme for MIMO systems with disturbance: a case study of binary distillation column. J. Intell. Manuf. 29, 1859–1871 (2018). https://doi.org/10.1007/s10845-016-1218-x

    Article  Google Scholar 

  15. Hariz, M.B., Bouani, F.: Synthesis and implementation of a robust fixed low-order controller for uncertain systems. Arab. J. Sci. Eng. 41(9), 3645–3654 (2016). https://doi.org/10.1007/s13369-016-2247-7

    Article  Google Scholar 

  16. Khaki-Sedigh, A., Moaveni, B.: Springer. Control Configuration Selection for Multivariable Plants (2009). https://doi.org/10.1007/978-3-642-03193-9

    Article  Google Scholar 

  17. Kucera, V.: Optimal decoupling controllers revisited. Control Cybern. 42(1), 139–154 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Kumar, C.H., Parvatheedevi, P.: Fuzzy lead-lag controller used in control of flexible AC transmission system devices. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 4(3), 1750–1758 (2015)

    Google Scholar 

  19. Liu, G., Wang, Z., Mei, C., Ding, Y.: A review of decoupling control based on multiple models. In: 24th Chinese Control and Decision Conference, pp. 1077–1081 (2012). https://doi.org/10.1109/CCDC.2012.6244171

  20. Mota Sousa, F.M., Barbosa Amara, V.M., Fonseca, R.R.: Adaptive fuzzy feedforward-feedback controller applied to level control in an experimental prototype. IFAC-PapersOnLine 52(1), 219–224 (2019)

    Article  Google Scholar 

  21. Oblak, S., Skrjanc, I.: Multivariable fuzzy predictive functional control of a MIMO nonlinear system. In: IEEE International Symposium on Intelligent Control, Limassol, Cyprus, pp. 1029–1034 (2005). https://doi.org/10.1109/.2005.1467155

  22. Park, K.H., Choi, G.H.: Necessary and sufficient conditions for the existence of decoupling controllers in the generalized plant model. J. Electr. Eng. Technol. 6, 706–712 (2011). https://doi.org/10.5370/JEET.2011.6.5.706

    Article  Google Scholar 

  23. Park, K.H.: Parameterization of decoupling controllers in the generalized plant model. IEEE Trans. Automat. Contr. 57(4), 1067–1070 (2012). https://doi.org/10.1109/TAC.2011.2173410

    Article  MathSciNet  MATH  Google Scholar 

  24. Park, K.H.: A simple existence condition of one-degree-of-freedom block decoupling controllers. Automatica 51, 14–17 (2015). https://doi.org/10.1016/j.automatica.2014.10.072

    Article  MathSciNet  MATH  Google Scholar 

  25. Pereira, R.D.O., Veronesi, M., Visioli, A., Normey-Rico, J.E.: Implementation and test of a new autotuning method for PID controllers of TITO processes. Control Eng. Pract. 58, 171–185 (2017). https://doi.org/10.1016/j.conengprac.2016.10.010

    Article  Google Scholar 

  26. Salgado, M.E., Conley, A.: MIMO interaction measure and controller structure selection. Int. J. Control 77(4), 367–383 (2007). https://doi.org/10.1080/0020717042000197631

    Article  MathSciNet  MATH  Google Scholar 

  27. Schmitz, U., Haber, R., Arousi, F., Bars, R.: Decoupling predictive control by error dependent tuning of the weighting factors. In: Process Control Conference, pp. 131–140 (2007)

    Google Scholar 

  28. Vazquez, F., Morilla, F.: Tuning decentralized PI controllers for MIMO systems with decouplings. In: 15th IFAC World Congress (2002)

    Google Scholar 

  29. Wittenmark, B., Salgado, M.E.: Hankel-norm based interaction measure for input-output pairing. In: Proceedings of the 15th Triennial World Congress, CD-ROM (2002). https://doi.org/10.3182/20020721-6-ES-1901.01625

  30. Wood, R.K., Berry, M.W.: Terminal composition control of a binary distillation column. Chem. Eng. Sci. 28(16), 1707–1710 (1973). https://doi.org/10.1016/0009-2509(73)80025-9

    Article  Google Scholar 

  31. Zermani, M.A., Feki, E., Mami, A.: Self-tuning weighting factor to decoupling control for incubator system. Int. J. Inf. Technol. Control Autom. 2(3), 67–83 (2013)

    Google Scholar 

  32. Zhu, Z.X.F.: Structural analysis and stability conditions of decentralized control systems. Ind. Eng. Chem. Res. 35(3), 736–745 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Dworak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dworak, P., Ghosh, S. (2020). A New Fuzzy Logic Decoupling Scheme for TITO Systems. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_87

Download citation

Publish with us

Policies and ethics