Skip to main content

Cell Cycle as a Fault Tolerant Control System

  • Conference paper
  • First Online:
Book cover Advanced, Contemporary Control

Abstract

We present models focused on the control mechanisms in cell cycle, allowing to predict the propagation of faults and its consequences for the cell fate. Development of such models is a two-stage process. First a graph representing molecules and interaction among them is built, through an extensive search of bioinformatic databases and publications. Such graph can be subsequently used to find cutting nodes, representing proteins or complexes or cutting edges, representing biochemical processes that are needed by control mechanisms. The second step is modeling and development of a dynamical model, e.g. in the form of ordinary differential equations that describe changes in concentration of the molecules involved in control mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  2. Neurath, H., Walsh, K.A.: Role of proteolytic enzymes in biological regulation (a review). Proc. Natl. Acad. Sci. 73(11), 3825–3832 (1976)

    Article  Google Scholar 

  3. Saier, M.J.: Classification of transmembrane transport systems in living organisms. In: Van Winkle, L. (ed.) Biomembrane transport. Academic Press, San Diego (1999)

    Google Scholar 

  4. Todeschini, A.L., Georges, A., Veitia, R.A.: Transcription factors: specific DNA binding and specific gene regulation. Trends Genet. 30(6), 211–219 (2014)

    Article  Google Scholar 

  5. Glisovic, T., Bachorik, J.L., Yong, J., Dreyfuss, G.: RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582(14), 1977–1986 (2008)

    Article  Google Scholar 

  6. Pomerening, J.R.: Positive-feedback loops in cell cycle progression. FEBS Lett. 583(21), 3388–3396 (2009)

    Article  Google Scholar 

  7. Puszynski, K., Hat, B., Lipniacki, T.: Oscillations and bistability in the stochastic model of p53 regulation. J. Theor. Biol. 254(2), 452–465 (2008)

    Article  Google Scholar 

  8. Jonak, K., Kurpas M., Puszynski, K.: Prediction of the behavior of mammalian cells after exposure to ionizing radiation based on the new mathematical model of ATM-Mdm2-p 53 regulatory pathway. In: Piętka, E. Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine, pp. 349–362. Springer, Cham (2014)

    Google Scholar 

  9. De Bont, R., van Larebeke, N.: Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19(3), 169–185 (2004)

    Article  Google Scholar 

  10. Houtgraaf, J.H., Versmissen, J., van der Giessen, W.J.: A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc. Med. 7(3), 165–172 (2006)

    Article  Google Scholar 

  11. Dolbniak, M., Kimmel, M., Smieja, J.: Modeling epigenetic regulation of PRC1 protein accumulation in the cell cycle. Biol. Direct 10, 62 (2015)

    Article  Google Scholar 

  12. Jonak, K., Kurpas, M., Szoltysek, K., Janus, P., Abramowicz, A., Puszynski, K.: A novel mathematical model of ATM/p53/NF- κB pathways points to the importance of the DDR switch-off mechanisms. BMC Syst. Biol. 10(1), 75 (2016)

    Article  Google Scholar 

  13. Hat, B., Kochańczyk, M., Bogdał, M.N., Lipniacki, T.: Feedbacks, bifurcations, and cell fate decision-making in the p53 system. PLoS Comput. Biol. 12(2), e1004787 (2016)

    Article  Google Scholar 

  14. Wang, D.G., Wang, S., Huang, B., Liu, F.: Roles of cellular heterogeneity, intrinsic and extrinsic noise in variability of p53 oscillation. Sci Rep. 9(1), 5883 (2019)

    Article  Google Scholar 

  15. Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. 88(20), 9107–9111 (1991)

    Article  Google Scholar 

  16. Pietenpol, J.A., Stewart, Z.A.: Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182, 475–481 (2002)

    Article  Google Scholar 

  17. Branzei, D., Foiani, M.: Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9(4), 297–308 (2008)

    Article  Google Scholar 

  18. Hat, B., Puszynski, K., Lipniacki, T.: Exploring mechanisms of oscillations in p53 and nuclear factor-β systems. IET Syst. Biol. 3, 342–355 (2009)

    Article  Google Scholar 

  19. Cooper, G., Hausman, R.: The Cell: A Molecular Approach, 6th edn. Sinauer Associates, Sunderland (2013)

    Google Scholar 

  20. DeMars, R., Held, K.R.: The spontaneous azaguanine-resistant mutants of diploid human fibroblasts. Humangenetik 16(1), 87–110 (1972). https://doi.org/10.1007/BF00393992

    Article  Google Scholar 

  21. Loeb, L.A.: A mutator phenotype in cancer. Cancer Res. 61(8), 3230–3239 (2001)

    Google Scholar 

  22. Rohlin, A., Zagoras, T., Nilsson. S., Lundstam, U., Wahlström, J., Hultén, L., Martinsson, T., Karlsson, G.B., Nordling, M.: A mutation in POLE predisposing to a multi-tumour phenotype. Int. J. Oncol. 45(1), 77–81 (2014)

    Google Scholar 

  23. Popat, S., Hubner, R., Houlston, R.S.: Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 23(3), 609–618 (2005)

    Article  Google Scholar 

  24. Kohn, K., Bohr, V.: Genomic instability and DNA repair. In: Alison, M. (ed.) The Cancer Handbook. Macmillan, Palgrave (2005)

    Google Scholar 

  25. Widel, M., Krzywon, A., Gajda, K., Skonieczna, M., Rzeszowska-Wolny, J.: Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species. Free Radic. Biol. Med. 68, 278–287 (2014)

    Article  Google Scholar 

  26. Puszynski, K., Jaksik, R., Swierniak, A.: Regulation of P53 by Sirna in radiation treated cells: simulation studies. Int. J. Appl. Math. Comput. Sci. 22(4), 1011–1018 (2012)

    Article  Google Scholar 

  27. Cieslar-Pobuda, A., Saenko, Y., Rzeszowska-Wolny, J.: PARP-1 inhibition induces a late increase in the level of reactive oxygen species in cells after ionizing radiation. Mutation Res. Fundam. Mol. Mech. Mutagenesis 732(1–2), 9–15 (2012)

    Article  Google Scholar 

  28. Harris, S.L., Levine, A.J.: The p53 pathway: positive and negative feedback loops. Oncogene 24(17), 2899–2908 (2005)

    Article  Google Scholar 

  29. Haupt, Y., et al.: Mdm2 promotes the rapid degradation of p 53. Nature 387(6630), 296–299 (1997)

    Google Scholar 

  30. Cantley, L.C., Neel, B.G.: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase AKT pathway. Proc. Natl. Acad. Sci. 96(8), 4240–4245 (1999)

    Article  Google Scholar 

  31. Johnson, D.G., Schneider-Broussard, R.: Role of E2F in cell cycle control and cancer. Front Biosci 3, 447–448 (1998)

    Article  Google Scholar 

  32. Lee, M., Rivera-Rivera, Y., Moreno, C.S., Saavedra, H.I.: The E2F activators control multiple mitotic regulators and maintain genomic integrity through Sgo1 and BubR1. Oncotarget 8(44), 77649–77672 (2017)

    Article  Google Scholar 

  33. Swierniak, A., Kimmel, M., Smieja, J., Puszynski, K., Psiuk-Maksymowicz, K.: System Engineering Approach to Planning Anticancer Therapies. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-28095-0

    Book  MATH  Google Scholar 

Download references

Acknowledgment

This work was partially supported by Silesian University of Technology internal grant in the year 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Smieja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smieja, J., Swierniak, A., Jaksik, R. (2020). Cell Cycle as a Fault Tolerant Control System. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_47

Download citation

Publish with us

Policies and ethics