Skip to main content

Path Controller for Ships with Switching Approach

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1196))

Abstract

The work presents the algorithm for controlling the movement of a ship along a desired route. The planned desired route for a moving ship was defined as a set of way-points connected by straight lines. The ship’s control is based on changes in the rudder angle, thus enabling the vessel to move along a given segment of the cruise route. The designed control algorithm is designed to minimize the heading error and cross-tracking error determined relative to the segment connecting two successive way-points. A different controller was used to minimize each of these errors. On the line segment, both controllers are switched on, while when there is a switch from one line segment to the next, only one controller is used, the one related to minimizing the course deviation. To obtain smooth control - after performing the return maneuver - make a skilful activation of the second controller, minimizing cross-tracking error. For this purpose, the control algorithm uses the appropriate switching logic with a scaled set signal from the controller minimizing the cross-tracking error. The performance quality of the developed algorithm for controlling the ship’s motion was tested on the training ship Blue Lady at the Ship Handling Research and Training Centre located on Lake Silm at Kamionka near Iława, Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blomberg, A.E.A., Sæbø, T.O., Hansen, R.E., Pedersen, R.B., Austeng, A.: Automatic detection of marine gas seeps using an interferometric sidescan sonar. IEEE J. Oceanic Eng. 42(3), 590–602 (2017). https://doi.org/10.1109/JOE.2016.2592559

    Article  Google Scholar 

  2. Caccia, M., Bibuli, M., Bono, R., Bruzzone, G., Bruzzone, G., Spirandelli, E.: Unmanned surface vehicle for coastal and protected waters applications: the Charlie project. Mar. Technol. Soc. J. 41(2), 62–71 (2007). https://doi.org/10.4031/002533207787442259

    Article  Google Scholar 

  3. Choyekh, M., Kato, N., Short, T., Ukita, M., Yamaguchi, Y., Senga, H., Yoshie, M., Tanaka, T., Kobayashi, E., Chiba, H.: Vertical water column survey in the Gulf of Mexico using autonomous underwater vehicle SOTAB-I. Mar. Technol. Soc. J. 49(3), 88–101 (2015). https://doi.org/10.4031/MTSJ.49.3.8

    Article  Google Scholar 

  4. Cornfield, S., Young, J.: Unmanned surface vehicles - game changing technology for naval operations. In: Roberts, G.N., Sutton, R. (eds.) Advances in Unmanned Marine Vehicles, pp. 311–328 (2006). https://doi.org/10.1049/PBCE069E_ch15. Chapter 15

  5. Fossen, T.I., Breivik, M., Skjetne, R.: Line-of-sight path following of underactuated marine craft. In: Proceedings of the Sixth IFAC Conference Maneuvering and Control of Marine Crafts (MCMC), Girona, Spain, pp. 244–249. (2003). https://doi.org/10.1016/S1474-6670(17)37809-6

  6. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, New Jersey (2011)

    Book  Google Scholar 

  7. Fredriksen, E., Pettersen, K.Y.: Global \(\kappa \)-exponential way-point maneuvering of ships: theory and experiments. Automatica 42(4), 677–687 (2006). https://doi.org/10.1016/j.automatica.2005.12.020

    Article  MathSciNet  MATH  Google Scholar 

  8. Isa, K., Arshad, M., Ishak, S.: A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control. Ocean Eng. 81, 111–129 (2014). https://doi.org/10.1016/j.oceaneng.2014.02.002

    Article  Google Scholar 

  9. Jorge, V.A.M., Granada, R., Maidana, R.G., Jurak, D.A., Heck, G., Negreiros, A.P.F., dos Santos, D.H., Gonçalves, L.M.G., Amory, A.M.: A Survey on unmanned surface vehicles for disaster robotics: main challenges and directions. Sensors 19(3), 702 (2019). https://doi.org/10.3390/s19030702

    Article  Google Scholar 

  10. Lazarowska, A.: Research on algorithms for autonomous navigation of ships. WMU J. Marit. Aff. 18, 341–358 (2019)

    Article  Google Scholar 

  11. Lisowski, J.: The sensitivity of state differential game vessel traffic model. Pol. Marit. Res. 23(2), 14–18 (2016). https://doi.org/10.1515/pomr-2016-0015

    Article  Google Scholar 

  12. Łebkowski, A.: Design of an autonomous transport system for coastal areas. TransNav: Int. J. Mar. Navig. Saf. Sea Transp. 12(1), 117–124 (2018). https://doi.org/10.12716/1001.12.01.13

    Article  Google Scholar 

  13. MathWorks. Technical computing software for engineers and scientists. The MathWorks, Inc. http://www.mathworks.com

  14. Mohamed-Seghir, M.: Computational intelligence method for ship trajectory planning. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 636–640 (2016). https://doi.org/10.1109/MMAR.2016.7575210

  15. Norgren, P., Skjetne, R.: Using autonomous underwater vehicles as sensor platforms for ice-monitoring. Model. Ident. Control 35(4), 263–277 (2014). https://doi.org/10.4173/mic.2014.4.4

    Article  Google Scholar 

  16. Peng, Z., Wang, J., Wang, D.: Containment maneuvering of marine surface vehicles with multiple parameterized paths via spatial-temporal decoupling. IEEE/ASME Trans. Mechatron. 22(2), 1026–1036 (2017). https://doi.org/10.1109/TMECH.2016.2632304

    Article  MathSciNet  Google Scholar 

  17. Pettersen, K.Y., Lefeber, E.: Way-point tracking control of ships. In: Proceedings of the 40th IEEE Conference Decision & Control, Orlando, Florida, USA, pp. 940–945 (2001). https://doi.org/10.1109/CDC.2001.980230

  18. Szyrowski, T., Sharma, S.K., Sutton, R., Kennedy, G.A.: Subsea cable tracking in an un-certain environment using particle filters. J. Mar. Eng. Technol. 14(1), 19–31 (2015). https://doi.org/10.1080/20464177.2015.1022381

    Article  Google Scholar 

  19. Tomera, M.: Track-keeping of a physical model of the tanker along a specified route. Scientific J. Fac. Electr. Control Eng. Gdansk Uni. Technol. 51(2016), 201–208 (2016). (in Polish)

    Google Scholar 

  20. Tomera, M., Alfuth, Ł.: Way-point path controller for ships, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. Accepted for printing (2020)

    Google Scholar 

  21. Xiang, X., Jouvencel, B., Parodi, O.: Coordinated formation control of multiple autonomous underwater vehicles for pipeline inspection. Int. J. Adv. Robot. Syst. 7(1), 75–84 (2010). https://doi.org/10.5772/7242

    Article  Google Scholar 

  22. Xiang, X., Yu, C., Zheng, J., Xu, G.: Motion forecast of intelligent underwater sampling apparatus - part I: design and algorithm. Indian J. Geo-Mar. Sci. 44(12), 1962–1970 (2015)

    Google Scholar 

  23. Zubowicz, T., Armiński, K., Witkowska, A., Śmierzchalski, R.: Marine autonomous surface ship - control system configuration. IFAC-PapersOnLine 52(8), 409–415 (2019). https://doi.org/10.1016/j.ifacol.2019.08.100

    Article  Google Scholar 

  24. Zwierzewicz, Z.: Robust and adaptive ship path-following control design with the full vessel model. In: 24th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 121–126 (2019). https://doi.org/10.1109/MMAR.2019.8864687

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Tomera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomera, M. (2020). Path Controller for Ships with Switching Approach. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_126

Download citation

Publish with us

Policies and ethics