Skip to main content

Simulation of Thin-Walled Parts End Milling with Fluid Jet Support

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing III (DSMIE 2020)

Abstract

One of the biggest barriers in the formation of surfaces of the thin-walled parts is the difficulties of prediction and prevention of deflections. The research is focused on the use of fluid jet support in processing as the technique to increase material cutting stability. The analysis of existing methods of deviations prevention is made. A preliminary number of simulations are proposed to define dynamic cutting parameters, apply it to the fluid jet simulation, and investigate the influence on the frequency part structure characteristics. The simulation results are allowed to trace the change in the natural frequency of the part and part with jet support. The potential fluid flow speed is established. The degree of the stress caused by directional fluid jet force is calculated. The technique is novel and useful in the sense that it is supported by fluid flow jet that can theoretically be organized on the existing equipment basis. The solution does not significantly affect the characteristics of the equipment structure while saving dimensional parameters. Matching between nozzle diameters and efficiency of fluid jet support is presented. Considerable oscillation amplitude reduction of the thin-walled part was observed using the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dobrotvorskiy, S., Basova, Y., Kononenko, S., Dobrovolska, L., Ivanova, M.: Numerical deflections analysis of variable low stiffness of thin-walled parts during milling. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II, DSMIE-2019. LNME, pp. 43–53. Springer, Cham (2020)

    Chapter  Google Scholar 

  2. Kononenko, S., Dobrotvorskiy, S., Basova, Y., Gasanov, M., Dobrovolska, L.: Deflections and frequency analysis in the milling of thin-walled parts with variable low stiffness. Acta Polytech. 59, 283–291 (2019)

    Article  Google Scholar 

  3. Bashistakumar, M., Pushkal, B.: Finite element analysis of orthogonal cutting forces in machining AISI 1020 steel using a carbide tip tool. J. Eng. Sci. 4(1), A11–A15 (2017)

    Google Scholar 

  4. Kolluru, K., Axinte, D.: Novel ancillary device for minimising machining vibrations in thin wall assemblies. Int. J. Mach. Tools Manuf. 85, 79–86 (2014)

    Article  Google Scholar 

  5. Ivanov, V., Mital, D., Karpus, V., Dehtiarov, I., Zajac, J., Pavlenko, I., Hatala, M.: Numerical simulation of the system “fixture–workpiece” for lever machining. Int. J. Adv. Manuf. Technol. 91(1–4), 79–90 (2017). https://doi.org/10.1007/s00170-016-9701-2

    Article  Google Scholar 

  6. Ivanov, V., Dehtiarov, I., Denysenko, Y., Malovana, N., Martynova, N.: Experimental diagnostic research of fixture. Diagnostyka 19(3), 3–9 (2018). https://doi.org/10.29354/diag/92293

    Article  Google Scholar 

  7. Feng, J., Wan, M., Gao, T.-Q., Zhang, W.-H.: Mechanism of process damping in milling of thin-walled workpiece. Int. J. Mach. Tools Manuf. 134, 1–19 (2018)

    Article  Google Scholar 

  8. Liu, C., Sun, J., Li, Y., Li, J.: Investigation on the milling performance of titanium alloy thin-walled part with air jet assistance. Int. J. Adv. Manuf. Technol. 95, 2865–2874 (2017)

    Article  Google Scholar 

  9. Vukman, J., Lukić, D., Milošević, M., Borojević, S., Antić, A., Đurđev, M.: Fundamentals of the optimization of machining process planning for the thin-walled aluminium parts. J. Prod. Eng. 19(2), 53–56 (2016)

    Google Scholar 

  10. Schulze, V., Arrazola, P., Zanger, F., Osterried, J.: Simulation of distortion due to machining of thin-walled components. Proc. CIRP 8, 45–50 (2013)

    Article  Google Scholar 

  11. Fei, J., Lin, B., Xiao, J., Ding, M., Yan, S., Zhang, X., Zhang, J.: Investigation of moving fixture on deformation suppression during milling process of thin-walled structures. J. Manuf. Process. 32, 403–411 (2018)

    Article  Google Scholar 

  12. Diez, E., Perez, H., Marquez, J., Vizan, A.: Feasibility study of in-process compensation of deformations in flexible milling. Int. J. Mach. Tools Manuf. 94, 1–14 (2015)

    Article  Google Scholar 

  13. Wang, M.-H., Sun, Y.: Error prediction and compensation based on interference-free tool paths in blade milling. Int. J. Adv. Manuf. Technol. 71, 1309–1318 (2014)

    Article  Google Scholar 

  14. Ratchev, S., Govender, E., Nikov, S., Phuah, K., Tsiklos, G.: Force and deflection modelling in milling of low-rigidity complex parts. J. Mater. Process. Technol. 143–144, 796–801 (2003)

    Article  Google Scholar 

  15. Wan, X.-J., Hua, L., Wang, X.-F., Peng, Q.-Z., Qin, X.: An error control approach to tool path adjustment conforming to the deformation of thin-walled workpiece. Int. J. Mach. Tools Manuf. 51, 221–229 (2011)

    Article  Google Scholar 

  16. Ramanaiah, B.V., Manikanta, B., Ravi Sankar, M., Malhotra, M., Gajrani, K.: Experimental study of deflection and surface roughness in thin wall machining of aluminum alloy. Mater. Today Proc. 5, 3745–3754 (2018)

    Article  Google Scholar 

  17. Padmanaban, K.P., Prabhaharan, G.: Dynamic analysis on optimal placement of fixturing elements using evolutionary techniques. Int. J. Prod. Res. 46, 4177–4214 (2008)

    Article  Google Scholar 

  18. Vasundara, M., Padmanaban, K.P.: Recent developments on machining fixture layout design, analysis, and optimization using finite element method and evolutionary techniques. Int. J. Adv. Manuf. Technol. 70, 79–96 (2013)

    Article  Google Scholar 

  19. Ivanov, V.: Process-oriented approach to fixture design. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing, DSMIE 2018. LNME, pp. 42–50. Springer, Cham (2019)

    Chapter  Google Scholar 

  20. Wan, X.-J., Zhang, Y.: A novel approach to fixture layout optimization on maximizing dynamic machinability. Int. J. Mach. Tools Manuf. 70, 32–44 (2013)

    Article  Google Scholar 

  21. Ivanov, V., Dehtiarov, I., Pavlenko, I., Kosov, I., Kosov, M.: Technology for complex parts machining in multiproduct manufacturing. Manage. Prod. Eng. Rev. 10(2), 25–36 (2019)

    Google Scholar 

  22. Usatyi, O., Avdieieva, O., Maksiuta, D., Tuan, P.: Experience in applying DOE methods to create formal macromodels of characteristics of elements of the flowing part of steam turbines. In: 17th Conference of Power System Engineering, Thermodynamics and Fluid Mechanics, AIP Conference Proceedings, Pilsen, Czech Republic, vol. 2047, no. 1, p. 020025 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevheniia Basova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kononenko, S., Dobrotvorskiy, S., Basova, Y., Dobrovolska, L., Yepifanov, V. (2020). Simulation of Thin-Walled Parts End Milling with Fluid Jet Support. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-50794-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50794-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50793-0

  • Online ISBN: 978-3-030-50794-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics