Skip to main content

Reliability Enhancement of URLLC Traffic in 5G Cellular Networks

  • Conference paper
  • First Online:
Book cover Computer Networks (CN 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1231))

Included in the following conference series:

  • 362 Accesses

Abstract

5G cellular networks must be able to deliver a small data payload in a very short time (up to 1 ms) with ultra-high probability of success (99.999%) to the mobile user. Achieving ultra-reliable and low-latency communication (URLLC) represents one of the major challenges in terms of system design. This paper covers definitions of latency and the reliability of URLLC traffic. Furthermore, it presents a method for reliability enhancement of URLLC traffic. To this end, the problem of reliability enhancement is formulated as an optimisation problem, the objective of which is to maximise the sum of data rates for all users with the URLLC constraints. Simulation results show that the suggested method validates the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ITU-R M.2083-0, IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond, September 2015

    Google Scholar 

  2. 3GPP TSG RAN WG1 Meeting 87, November 2016

    Google Scholar 

  3. 3GPP TR 38.913 V14.2.0, 5G; Study on Scenarios and Requirements for Next Generation Access Technologies (2017)

    Google Scholar 

  4. Zhang, L., Ijaz, A., Xiao, P., Quddus, A., Tafazolli, R.: Subband filtered multi-carrier systems for multi-service wireless communications. IEEE Trans. Wireless Comm. 16(3), 1893–1907 (2017)

    Article  Google Scholar 

  5. Zhang, L., Ijaz, A., Xiao, P.: Multi-service system: an enabler of flexible 5G air-interface. IEEE Commun. Mag. 55(10), 152–159 (2017)

    Article  Google Scholar 

  6. Pedersen, K., Pocovi, G., Steiner, J., Maeder, A.: Agile 5G scheduler for improved E2E performance and flexibility for different network implementations. IEEE Commun. Mag. 56(3), 210–217 (2018)

    Article  Google Scholar 

  7. Kowalski J. M., Nogami T., Yin Z., Sheng J., Ying K.: Coexistence of enhanced mobile broadband communications and ultra reliable low latency communications in mobile fronthaul. In: Broadband Access Communication Technologies XII, no. January, p. 11 (2018)

    Google Scholar 

  8. Anand, A., Veciana, G., Shakkottai, S.: Joint scheduling of URLLC and eMBB traffic in 5G wireless networks. IEEE International Conference on Computing Communication, Honolulu, USA (2018)

    Google Scholar 

  9. Esswie, A.A., Pedersen, K.I.: Opportunistic spatial preemptive scheduling for URLLC and eMBB coexistence in multi-user 5G networks. IEEE Access 6, 38451–38463 (2018)

    Article  Google Scholar 

  10. Hoymann, C., et al.: LTE release 14 outlook. IEEE Commun. Mag. 54(6), 44–49 (2016)

    Article  Google Scholar 

  11. ITU-T: The Tactile Internet (2014). https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000230001PDFE.pdf

  12. Schulz, P., et al.: Latency critical IoT application in 5G: perspective on the design of radio access networks. IEEE Trans. Wirel. Commun. 55(2), 70–78 (2017)

    Google Scholar 

  13. She, C., Yang, C., Quek, T.S.: Cross-layer optimization for ultra-reliable and low-latency radio access networks. IEEE Trans. Wirel. Commun. 17(1), 127–141 (2018)

    Article  Google Scholar 

  14. Anwar, W., Kulkarni, K., Franchi, N., Fettweis, G.: Physical layer abstraction for ultra-reliable communications in 5G multi-connectivity networks. In: IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Italy, Bologna (2018)

    Google Scholar 

  15. Rao, J., Vrzic, S.: Packet duplication for URLLC in 5G dual connectivity architecture. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, April 2018

    Google Scholar 

  16. Harchol-Balter, M.: Performance Modeling and Design of Computer System: Queueing Theory in Action. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  17. Anand, A., de Veciana, G.: Resource allocation and HARQ optimization for URLLC traffic in 5G wireless networks. http://arxiv.org/abs/1804.09201

  18. Jang, J., Lee, K.B.: Transmit power adaptation for multiuser OFDM systems. IEEE J. Sel. Areas Commun. 21(2), 171–178 (2003)

    Article  Google Scholar 

  19. Burge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York (1997). https://doi.org/10.1007/b97617

    Book  Google Scholar 

  20. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over sliding windows. SIAM J. Comput. 31(6), 1794–1813 (2002)

    Article  MathSciNet  Google Scholar 

  21. Kushner, H.J., Whiting, P.A.: Convergence of proportional-fair sharing algorithms under general conditions. IEEE Trans. Wirel. Commun. 3(4), 1250–1259 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Martyna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martyna, J. (2020). Reliability Enhancement of URLLC Traffic in 5G Cellular Networks. In: Gaj, P., Gumiński, W., Kwiecień, A. (eds) Computer Networks. CN 2020. Communications in Computer and Information Science, vol 1231. Springer, Cham. https://doi.org/10.1007/978-3-030-50719-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50719-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50718-3

  • Online ISBN: 978-3-030-50719-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics