Skip to main content

Abstract

Continuous monitoring and diagnostics of the equipment technical condition are needed to improve reliability, to prevent possible failures, to ensure the service life extension of electrical equipment (EE) at industrial enterprises. In the present work, the authors suggest to use a diagnostic data fusion model developed for the EE technical condition diagnosis. To test the model, a scenario for searching the EE failure state was made and implemented. A diagnostic data fusion model is necessary to process the increasing amount of information produced by various EEs for subsequent analysis. The proposed data fusion model uses the levels of the Joint Directors of Laboratories (JDL) model, Data Mining technology, the ontology storage and EE diagnostics and prediction models and methods based on probabilistic statistical methods and soft computing methods. A detailed description of a fault detection model for EE at an oil company is considered. The developed diagnostic data fusion model will make it possible to identify EE faulty states and failures, as well as to increase the efficiency of making diagnostic decisions under the conditions of heterogeneous data obtained from a lot of EEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramov, O.V.: Monitoring and forecasting of the technical condition of systems of responsible appointment. Inform. Control Syst. 2(28), 4–15 (2011)

    Google Scholar 

  2. Voloshin, A.A., Voloshin, E.A.: Forecasting the technical condition of the equipment and managing the stability of the energy system through technology of the internet of things for monitoring in electric networks of low. Int. J. Humanit. Nat. Sci. 12, 128–134 (2017)

    Google Scholar 

  3. Horoshev, N.I., Eltishev, D.K.: Integrated assessment and forecasting of technical condition of the equipment of electrotechnical complexes. Inform. Control Syst. 4(50), 58–68 (2016)

    Google Scholar 

  4. Kovalev, S.M., Kolodenkova, A.E., Snasel, V.: Intellectual technologies of data fusion for diagnostics technical objects. Ontol. Designing 9(1), 152–168 (2019)

    Article  Google Scholar 

  5. Alofi, A., Alghamdi, A., Alahmadi, R., Aljuaid, N., Hemalatha, M.: A review of data fusion techniques. Int. J. Comput. Appl. 167(7), 37–41 (2017)

    Google Scholar 

  6. Khramshin, V.R., Nikolayev, A.A., Evdokimov, S.A., Kondrashova, Y.N., Larina, T.P.: Validation of diagnostic monitoring technical state of iron and steel works transformers. In: IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), pp. 596–600 (2016)

    Google Scholar 

  7. Saushev, A.V., Sherstnev, D.A., Shirokov, N.V.: Analysis of methods for diagnosing high-voltage apparatus. Bull. Admiral Makarov State Univ. Maritime Inland Shippin 9(5), 1073–1085 (2017)

    Google Scholar 

  8. Bulac, C., Tristiu, I., Mandis, A., Toma, L.: On-line power systems voltage stability monitoring using artificial neural networks. In: International Symposium on Advanced Topics in Electrical Engineering, pp. 622–625 (2015)

    Google Scholar 

  9. Nakamura, E.F., Loureiro, A.A., Frery, A.C.: Information fusion for wireless sensor networks: methods, models, and classifications. ACM Comput. Surv. 39(3), 55 (2007)

    Article  Google Scholar 

  10. Pareek, S., Sharma, R., Maheshwari, R.: Application of artificial neural networks to monitor thermal condition of electrical equipment. In: 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), pp. 183–187 (2017)

    Google Scholar 

  11. Eltyshev, D.K.: On the development of intelligent expert diagnostic system for assessing the conditions of electrical equipment. Syst. Methods Technol. 3(35), 57–63 (2017)

    Google Scholar 

  12. Modern methods of diagnostics and assessment of the technical condition of electric power equipment. https://niitn.transneft.ru/u/section_file/246601/22.pdf. Accessed 10 May 2019

  13. Vdoviko, V.P.: Methodology of the high-voltage electrical equipment diagnostics system. Electricity 2, 14–20 (2010)

    Google Scholar 

  14. Garcia, J., Rein, K., Biermannn, J., Krenc, K., Snidaro, L.: Considerations for enhancing situation assessment through multi-level fusion of hard and soft data. In: 19th International Conference on Information Fusion (FUSION), Heidelberg, pp. 2133–2138 (2016)

    Google Scholar 

  15. Kolodenkova, A., Khalikova, E., Vereshchagina, S.: Data fusion and industrial equipment diagnostics based on information technology. In: International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, pp. 1–5 (2019)

    Google Scholar 

  16. Kolodenkova, A.E., Dolgiy, A.I.: Diagnosing of devices of railway automatic equipment on the basis of methods of diverse data fusion. Adv. Intell. Syst. Comput. 875, 277–283 (2019)

    Google Scholar 

Download references

Acknowledgement

The work was supported by RFBR (Grants No. 19-07-00195, No. 19-08-00152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna E. Kolodenkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolodenkova, A.E., Khalikova, E.A., Vereshchagina, S.S. (2020). Development of a Diagnostic Data Fusion Model of the Electrical Equipment at Industrial Enterprises. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds) Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19). IITI 2019. Advances in Intelligent Systems and Computing, vol 1156. Springer, Cham. https://doi.org/10.1007/978-3-030-50097-9_50

Download citation

Publish with us

Policies and ethics