Skip to main content

SLIP-Based Concept of Combined Limb and Body Control of Force-Driven Robots

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2020)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 84))

Included in the following conference series:

Abstract

Many different approaches in hard- and software have been investigated to achieve bipedal locomotion. They can be partitioned into two separate classes: Mathematical approaches, offering provable stability, and bio-inspired ones, reproducing natural observations. The paper at hand presents a new concept to overcome this separation. By generalizing several SLIP variations (Spring Loaded Inverted Pendulum), a new type of hardware abstraction, the so-called Central Mass Model (CMM), is introduced. The CMM is designed to directly support the execution of bio-inspired control approaches, while its physical simplicity still allows for mathematical proofs. A controller, implementing the CMM abstraction on a force-driven robot, is derived and described in detail for the bipedal robot Carl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniak, G., Biswas, T., Cortes, N., Sikdar, S., Chun, C., Bhandawat, V.: Spring-loaded inverted pendulum goes through two contraction-extension cycles during the single-support phase of walking. Biol. Open 8(6), bio043695 (2019). https://doi.org/10.1242/bio.043695

    Article  Google Scholar 

  2. Blickhan, R.: The spring-mass model for running and hopping. J. Biomech. 22(11–12), 1217–1227 (1989)

    Article  Google Scholar 

  3. Drama, Ö., Badri-Spröwitz, A.: Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots. arXiv:1909.03687 [cs], September 2019

  4. Englsberger, J., Ott, C., Albu-Schäffer, A.: Three-dimensional bipedal walking control using divergent component of motion. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2600–2607. IEEE (2013)

    Google Scholar 

  5. Geyer, H., Seyfarth, A., Blickhan, R.: Compliant leg behaviour explains basic dynamics of walking and running. Proc. Roy. Soc. B: Biol. Sci. 273(1603), 2861–2867 (2006). https://doi.org/10.1098/rspb.2006.3637

    Article  Google Scholar 

  6. Kawakami, T., Hosoda, K.: Bipedal walking with oblique mid-foot joint in foot. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 535–540. IEEE, December 2015

    Google Scholar 

  7. Lee, J., Vu, M.N., Oh, Y.: A control method for bipedal trunk spring loaded inverted pendulum model. In: The Thirteenth International Conference on Autonomic and Autonomous Systems, pp. 24–29 (2017)

    Google Scholar 

  8. Luksch, T., Berns, K.: Control of bipedal walking exploiting postural reflexes and passive dynamics. In: IEEE International Conference on Applied Bionics and Biomechanics (ICABB). Citeseer (2010)

    Google Scholar 

  9. Nejadfard, A., Schütz, S., Vonwirth, P., Mianowski, K., Karsten, B.: Moment arm analysis of the biarticular actuators in compliant robotic leg CARL. In: Conference on Biomimetic and Biohybrid Systems, pp. 348–360. Springer, Heidelberg, July 2018

    Google Scholar 

  10. Reher, J., Cousineau, E.A., Hereid, A., Hubicki, C.M., Ames, A.D.: Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS. In: 2016 IEEE International Conference on Robotics and Automation, pp. 1794–1801, May 2016. https://doi.org/10.1109/ICRA.2016.7487325

  11. Schütz, S., Nejadfard, A., Mianowski, K., Vonwirth, P., Berns, K.: CARL – a compliant robotic leg featuring mono- and biarticular actuation. In: IEEE-RAS International Conference on Humanoid Robots (2017)

    Google Scholar 

  12. Sharbafi, M.A., Maufroy, C., Ahmadabadi, M.N., Yazdanpanah, M.J., Seyfarth, A.: Robust hopping based on virtual pendulum posture control. Bioinspir. Biomim. 8(3), 036002 (2013). https://doi.org/10.1088/1748-3182/8/3/036002

    Article  Google Scholar 

  13. Sharbafi, M.A., Rashty, A.M.N., Rode, C., Seyfarth, A.: Reconstruction of human swing leg motion with passive biarticular muscle models. Hum. Mov. Sci. 52, 96–107 (2017)

    Article  Google Scholar 

  14. Song, S., Geyer, H.: A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. 593(16), 3493–3511 (2015). https://doi.org/10.1113/JP270228

    Article  Google Scholar 

  15. Stephens, B.: Humanoid push recovery. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots, November 2007. https://doi.org/10.1109/ICHR.2007.4813931

  16. Torricelli, D., Gonzalez, J., Weckx, M., Jiménez-Fabián, R., Vanderborght, B., Sartori, M., Dosen, S., Farina, D., Lefeber, D., Pons, J.L.: Human-like compliant locomotion: state of the art of robotic implementations. Bioinspir. Biomim. 11(5), 051002 (2016). https://doi.org/10.1088/1748-3190/11/5/051002

    Article  Google Scholar 

  17. Westervelt, E., Grizzle, J., Koditschek, D.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42–56 (2003). https://doi.org/10.1109/TAC.2002.806653

    Article  MathSciNet  MATH  Google Scholar 

  18. Williams, D., Khatib, O.: The virtual linkage: a model for internal forces in multi-grasp manipulation. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 1025–1030 (1993). https://doi.org/10.1109/ROBOT.1993.292110

  19. Zhao, J., Liu, Q., Schütz, S., Berns, K.: Experimental verification of an approach for disturbance estimation and compensation on a simulated biped during perturbed stance. In: IEEE International Conference on Robotics and Automation (ICRA 2014), Hongkong, China (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Vonwirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vonwirth, P., Nejadfard, A., Mianowski, K., Berns, K. (2020). SLIP-Based Concept of Combined Limb and Body Control of Force-Driven Robots. In: Zeghloul, S., Laribi, M., Sandoval Arevalo, J. (eds) Advances in Service and Industrial Robotics. RAAD 2020. Mechanisms and Machine Science, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-48989-2_58

Download citation

Publish with us

Policies and ethics