Skip to main content

A Boosted Decision Tree Approach for a Safe Human-Robot Collaboration in Quasi-static Impact Situations

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2020)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 84))

Included in the following conference series:

Abstract

According to the ISO/TS 15066, human safety in quasi-static impact situations in human-robot collaboration is assessed first by identifying all high-risk impact situations and then by measuring maximal and steady-state values the impact force and pressure at these possibly critical situations. This means that if something is changed in a collaborative application, the ISO/TS 15066 requires that the risk analysis and the force measurements must be redone, which severely limits the flexibility of a robotic system. In this paper, a physics guided boosted decision tree is proposed as a tool to assess human safety. The basic hypothesis is that a physics guided boosted decision tree can be trained to estimates the peak impact force for a given impact velocity, robot configuration, an impact point on the robot and a human body part. Based on experimental measurements done with the Universal Robots UR10e and on a simple mathematical model of an impact between a point on a robot and a point on a human body part, a feature vector is generated as an input to the boosted decision tree. After the training using Matlab’s Least-squares boosting algorithm, the boosted decision tree can predict the measured peak impact force with a relative error of less than 9% thus supporting the basic hypothesis. However, the predictions of the trained boosted decision tree are valid only for the case of a quasi-static impact in a vertical direction between a robot’s end-effector and a back of human’s non-dominant hand.

This work was supported by the DR.KORS - Dynamic reconfigurability of collaborative robot systems project, funded by FFG - Österreichische Forschungsförderungsgesellschaft, project number 864892.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Technical Specification: ISO/TS 15066:2016, Robots and robotic devices: collaborative robots. Technical report, The International Organization for Standardization (2016)

    Google Scholar 

  2. Ajoudani, A., Zanchettin, A.M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., Khatib, O.: Progress and prospects of the human-robot collaboration. Auton. Robots 42(5), 957–975 (2018)

    Article  Google Scholar 

  3. Echávarri, J., Ceccarelli, M., Carbone, G., Alén, C., Muñoz, J.L., Díaz, A., Munoz-Guijosa, J.M.: Towards a safety index for assessing head injury potential in service robotics. Adv. Robot. 27(11), 831–844 (2013)

    Article  Google Scholar 

  4. Forssell, U., Lindskog, P.: Combining semi-physical and neural network modeling: an example of its usefulness. IFAC Proc. Vol. 30(11), 767–770 (1997)

    Article  Google Scholar 

  5. Garofalo, G., Mansfeld, N., Jankowski, J., Ott, C.: Sliding mode momentum observers for estimation of external torques and joint acceleration. In: IEEE International Conference on Robotics and Automation (ICRA) (2019)

    Google Scholar 

  6. Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Sebastopol (2019)

    Google Scholar 

  7. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Safety evaluation of physical human-robot interaction via crash-testing. In: Robotics: Science and Systems, vol. 3, pp. 217–224. Citeseer (2007)

    Google Scholar 

  8. Haddadin, S., De Luca, A., Albu-Schäffer, A.: Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Rob. 33(6), 1292–1312 (2017)

    Article  Google Scholar 

  9. Haddadin, S., Haddadin, S., Khoury, A., Rokahr, T., Parusel, S., Burgkart, R., Bicchi, A., Albu-Schäffer, A.: On making robots understand safety: embedding injury knowledge into control. Int. J. Robot. Res. 31(13), 1578–1602 (2012)

    Article  Google Scholar 

  10. Hoo, K.A., Sinzinger, E.D., Piovoso, M.J.: Improvements in the predictive capability of neural networks. J. Process Control 12(1), 193–202 (2002)

    Article  Google Scholar 

  11. Jia, X., Willard, J., Karpatne, A., Read, J., Zwart, J., Steinbach, M., Kumar, V.: Physics guided RNNs for modeling dynamical systems: a case study in simulating lake temperature profiles. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 558–566. SIAM (2019)

    Google Scholar 

  12. Karpatne, A., Atluri, G., Faghmous, J.H., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar, S., Samatova, N., Kumar, V.: Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29(10), 2318–2331 (2017)

    Article  Google Scholar 

  13. Karpatne, A., Watkins, W., Read, J., Kumar, V.: Physics-guided neural networks (PGNN): an application in lake temperature modeling. arXiv preprint arXiv:1710.11431 (2017)

  14. Kovincic, N., Gattringer, H., Müller, A., Weyrer, M., Schlotzhauer, A., Kaiser, L., Brandstötter, M.: A model-based strategy for safety assessment of a robot arm interacting with humans. PAMM 19(1), e201900247 (2019)

    Article  Google Scholar 

  15. Mansfeld, N., Hamad, M., Becker, M., Marin, A.G., Haddadin, S.: Safety map: a unified representation for biomechanics impact data and robot instantaneous dynamic properties. IEEE Robot. Autom. Lett. 3(3), 1880–1887 (2018)

    Article  Google Scholar 

  16. Ren, H., Stewart, R., Song, J., Kuleshov, V., Ermon, S.: Learning with weak supervision from physics and data-driven constraints. AI Mag. 39(1), 27–38 (2018)

    Article  Google Scholar 

  17. Schlotzhauer, A., Kaiser, L., Wachter, J., Brandstotter, M., Hofbaur, M.: On the trustability of the safety measures of collaborative robots: 2D Collision-force-map of a sensitive manipulator for safe HRC. In: IEEE International Conference on Automation Science and Engineering (CASE) (2019)

    Google Scholar 

  18. Stewart, R., Ermon, S.: Label-free supervision of neural networks with physics and domain knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kovincic, N., Gattringer, H., Müller, A., Brandstötter, M. (2020). A Boosted Decision Tree Approach for a Safe Human-Robot Collaboration in Quasi-static Impact Situations. In: Zeghloul, S., Laribi, M., Sandoval Arevalo, J. (eds) Advances in Service and Industrial Robotics. RAAD 2020. Mechanisms and Machine Science, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-48989-2_26

Download citation

Publish with us

Policies and ethics