Skip to main content

Reconstructing the Optical Parameters of a Layered Medium with Optical Coherence Elastography

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 328))

Abstract

In this work we consider the inverse problem of reconstructing the optical properties of a layered medium from an elastography measurement where optical coherence tomography is used as the imaging method. We hereby model the sample as a linear dielectric medium so that the imaging parameter is given by its electric susceptibility, which is a frequency- and depth-dependent parameter. Additionally to the layered structure (assumed to be valid at least in the small illuminated region), we allow for small scatterers which we consider to be randomly distributed, a situation which seems more realistic compared to purely homogeneous layers. We then show that a unique reconstruction of the susceptibility of the medium (after averaging over the small scatterers) can be achieved from optical coherence tomography measurements for different compression states of the medium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ammari, H., Bretin, E., Millien, P., Seppecher, L., Seo, J.K.: Mathematical modeling in full-field optical coherence elastography. SIAM J. Appl. Math. 75(3), 1015–1030 (2015)

    Google Scholar 

  2. Ammari, H., Romero, F., Shi, C.: A signal separation technique for sub-cellular imaging using dynamic optical coherence tomography. Multiscale Model. Simul. 15(3), 1155–1175 (2017)

    Article  MathSciNet  Google Scholar 

  3. Brezinski, M.E.: Optical Coherence Tomography Principles and Applications. Academic Press, New York (2006)

    Google Scholar 

  4. Drexler, W., Fujimoto, J.G.: Optical Coherence Tomography: Technology and Applications, 2nd edn. Springer International Publishing, Switzerland (2015)

    Book  Google Scholar 

  5. Drexler, W., Hubmer, S., Krainz, L., Neubauer, A., Scherzer, O., Schmid, J., Sherina, E.: Lamé parameter estimation from static displacement field measurements. In: Burger, M., Hahn, B., Quinto, E.T. (eds) Oberwolfach Conference: Tomographic Inverse Problems: Theory and Applications, Oberwolfach reports, pp. 74–76. EMS Publishing House (2019)

    Google Scholar 

  6. Elbau, P., Mindrinos, L., Scherzer, O.: Mathematical methods of optical coherence tomography. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 1169–1204. Springer, New York (2015)

    Chapter  Google Scholar 

  7. Elbau, P., Mindrinos, L., Scherzer, O.: The inverse scattering problem for orthotropic media in polarization-sensitive optical coherence tomography. GEM. Int. J. Geomath. 9(1), 145–165 (2018)

    Article  MathSciNet  Google Scholar 

  8. Elbau, P., Mindrinos, L., Veselka, L.: Quantitative OCT reconstructions for dispersive media. In: Kaltenbacher, B., Wald, A., Schuster, T. (eds) Time-dependent problems in imaging and parameter identification, to appear. Springer, Heidelberg (2020)

    Google Scholar 

  9. Nahas, A., Bauer, M., Roux, S., Boccara, A.C.: 3D static elastography at the micrometer scale using full field oct. Biomed. Opt. Express 4(10), 2138–2149 (2013)

    Article  Google Scholar 

  10. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  11. Santos, M., Araüjo, A., Barbeiro, S., Cramelo, F., Correia, A., Marques, M.I., Morgado, M., Pinto, L., Serranho, P., Bernardes, A.: Maxwell’s equations based 3d model of light scattering in the retina. In: 4th Portuguese Meeting on Bioengineering (ENBENG), p. 5. IEEE (2015)

    Google Scholar 

  12. Sun, C., Standish, B.A., Yang, V.: Optical coherence elastography: current status and future applications. J. Biomed. Opt. 16(4), 1–13 (2011)

    Article  Google Scholar 

  13. Tricoli, U., Carminati, R.: Modeling of full-field optical coherence tomography in scattering media. J. Opt. Soc. Am. A 36(11), C122–C129 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by the greatly appreciated support of the Austrian Science Fund (FWF) via the special research programme SFB F68 “Tomography Across the Scales”: Peter Elbau and Leopold Veselka have been supported via the subproject F6804-N36 “Quantitative Coupled Physics Imaging”, and Leonidas Mindrinos acknowledges support from the subproject F6801-N36.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Elbau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elbau, P., Mindrinos, L., Veselka, L. (2020). Reconstructing the Optical Parameters of a Layered Medium with Optical Coherence Elastography. In: Beilina, L., Bergounioux, M., Cristofol, M., Da Silva, A., Litman, A. (eds) Mathematical and Numerical Approaches for Multi-Wave Inverse Problems. CIRM 2019. Springer Proceedings in Mathematics & Statistics, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-030-48634-1_8

Download citation

Publish with us

Policies and ethics