Skip to main content

Quantum Solution for the 3-SAT Problem Based on IBM Q

  • Conference paper
  • First Online:

Abstract

Quantum computing is currently considered to be a new type of computing model that has a subversive impact on the future. Based on its leading information and communication technology advantages, IBM launched IBM Q Experience cloud service platform, and achieved phased research results in the quantum simulator and programming framework. In this paper, we propose a quantum solution for the 3-SAT problem, which includes three steps: constructing the initial state, computing the unitary \(U_f\) implementing the black-box function f and performing the inversion about the average. In addition, the corresponding experimental verification for an instance of the Exactly-1 3-SAT problem with QISKit, which can connect to IBM Q remotely, is depicted. The experimental result not only show the feasibility of the quantum solution, but also serve to evaluate the functionality of IBM Q devices.

J. Chen—This work is supported by Science and Technology Project of NRGD Quantum Technology Co., Ltd., “Research on Power Quantum Security Service Platform and Key Technologies of Multi-mode Access”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982). https://doi.org/10.1007/BF02650179

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A (Math. Phys. Sci.) 439(1907), 553–558 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  5. Liu, Z.-H., Chen, H.-W., Xu, J., Liu, W.-J., Li, Z.-Q.: High-dimensional deterministic multiparty quantum secret sharing without unitary operations. Quantum Inf. Process. 11(6), 1785–1795 (2011). https://doi.org/10.1007/s11128-011-0333-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., Yang, Y.X.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17(9), 225 (2018)

    Article  MathSciNet  Google Scholar 

  7. Huang, W., Su, Q., Liu, B., He, Y.H., Fan, F., Xu, B.J.: Efficient multiparty quantum key agreement with collective detection. Sci. Rep. 7(1), 15264 (2017)

    Article  Google Scholar 

  8. Liu, W.J., Xu, Y., Yang, C.N., Gao, P.P., Yu, W.B.: An efficient and secure arbitrary N-party quantum key agreement protocol using bell states. Int. J. Theor. Phys. 57(1), 195–207 (2018). https://doi.org/10.1007/s10773-017-3553-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, W.J., Chen, H.W., Li, Z.Q., Liu, Z.H.: Efficient quantum secure direct communication with authentication. Chin. Phys. Lett. 25(7), 2354–2357 (2008)

    Article  Google Scholar 

  10. Liu, W.J., Chen, H.W., Ma, T.H., Li, Z.Q., Liu, Z.H., Hu, W.B.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chin. Phys. B 18(10), 4105–4109 (2009)

    Article  Google Scholar 

  11. Xu, G., Chen, X.-B., Li, J., Wang, C., Yang, Y.-X., Li, Z.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297–4322 (2015). https://doi.org/10.1007/s11128-015-1098-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, W., Liu, C., Wang, H., Jia, T.: Quantum private comparison: a review. IETE Tech. Rev. 30(5), 439–445 (2013)

    Article  Google Scholar 

  13. Liu, W.J., Liu, C., Liu, Z.H., Liu, J.F., Geng, H.T.: Same initial states attack in Yang et al.’s quantum private comparison protocol and the improvement. Int. J. Theor. Phys. 53(1), 271–276 (2014)

    Article  Google Scholar 

  14. Liu, W.J., Liu, C., Chen, H.W., Li, Z.Q., Liu, Z.H.: Cryptanalysis and improvement of quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 62(2), 210–214 (2014)

    Article  MathSciNet  Google Scholar 

  15. Liu, W.-J., Liu, C., Wang, H., Liu, J.-F., Wang, F., Yuan, X.-M.: Secure quantum private comparison of equality based on asymmetric W state. Int. J. Theor. Phys. 53(6), 1804–1813 (2014). https://doi.org/10.1007/s10773-013-1979-3

    Article  MATH  Google Scholar 

  16. Liu, W.-J., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2015). https://doi.org/10.1007/s11128-015-1202-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, W.J., Wang, F., Ji, S., Qu, Z.G., Wang, X.J.: Attacks and improvement of quantum sealed-bid auction with EPR pairs. Commun. Theor. Phys. 61(6), 686–690 (2014)

    Article  Google Scholar 

  18. Liu, W.J., Chen, Z.-F., Liu, C., Zheng, Y.: Improved deterministic N-to-one joint remote preparation of an arbitrary qubit via EPR pairs. Int. J. Theor. Phys. 54(2), 472–483 (2015). https://doi.org/10.1007/s10773-014-2241-3

    Article  MATH  Google Scholar 

  19. Chen, X.-B., Sun, Y.-R., Xu, G., Jia, H.-Y., Qu, Z., Yang, Y.-X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 1–29 (2017). https://doi.org/10.1007/s11128-017-1690-z

    Article  MATH  Google Scholar 

  20. Qu, Z.G., Wu, S.Y., Wang, M.M., Sun, L., Wang, X.J.: Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels. Quantum Inf. Process. 16(306), 1–25 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Wang, M.M., Yang, C., Mousoli, R.: Controlled cyclic remote state preparation of arbitrary qubit states. CMC-Comput. Mater. Continua 55(2), 321–329 (2018)

    Google Scholar 

  22. Qu, Z., Cheng, Z., Liu, W., Wang, X.: A novel quantum image steganography algorithm based on exploiting modification direction. Multimedia Tools Appl. 78(7), 7981–8001 (2018). https://doi.org/10.1007/s11042-018-6476-5

    Article  Google Scholar 

  23. Qu, Z., Chen, S., Ji, S., Ma, S., Wang, X.: Anti-noise bidirectional quantum steganography protocol with large payload. Int. J. Theor. Phys. 57(6), 1903–1927 (2018). https://doi.org/10.1007/s10773-018-3716-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Qu, Z.G., Zhu, T.C., Wang, J.W., Wang, X.J.: A novel quantum stegonagraphy based on brown states. CMC-Comput. Mater. Continua 56(1), 47–59 (2018)

    Google Scholar 

  25. Liu, W.-J., Chen, Z.-Y., Ji, S., Wang, H.-B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017). https://doi.org/10.1007/s10773-017-3484-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, W.J., Chen, Z.Y., Liu, J.S., Su, Z.F., Chi, L.H.: Full-blind delegating private quantum computation. CMC-Comput. Mater. Continua 56(2), 211–223 (2018)

    Google Scholar 

  27. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. eprint arXiv (2013)

    Google Scholar 

  28. Liu, W.-J., Gao, P.-P., Yu, W.-B., Qu, Z.-G., Yang, C.-N.: Quantum relief algorithm. Quantum Inf. Process. 17(10), 1–15 (2018). https://doi.org/10.1007/s11128-018-2048-x

    Article  MathSciNet  MATH  Google Scholar 

  29. QISKit: Open Source Quantum Information Science Kit. https://qiskit.org/. Accessed 12 Apr 2018

  30. IBM quantum computing platform. https://www.research.ibm.com/ibm-q/. Accessed 11 Apr 2017

  31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10 Anniversary edn. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  32. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman and Company, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxiu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Bian, Yx., Fan, Q., Chen, J. (2020). Quantum Solution for the 3-SAT Problem Based on IBM Q. In: Zhang, X., Liu, G., Qiu, M., Xiang, W., Huang, T. (eds) Cloud Computing, Smart Grid and Innovative Frontiers in Telecommunications. CloudComp SmartGift 2019 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-030-48513-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48513-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48512-2

  • Online ISBN: 978-3-030-48513-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics