Skip to main content

Abstract

Today, the manufacture of components with improved functionality and performance for industrial applications involves not only the selection of better and lighter materials but also the use of surface engineering to achieve superior resistance-to-weight ratio. For applications in aeronautical and aerospace sectors, friction, wear, temperature resistance, erosion, corrosion, adhesion, and surface finishing are some aspects of interest in research. The technique used for coating any substrate strictly depends on the type of material and the property that is required to improve. Nowadays, thermal spraying is a reliable and cost-efficient method to deposit thick coatings with a wide variety of feedstock materials and substrates. This chapter presents a review of the main thermal spray processes used to coat light alloys and shows experimental results of AlSiC and FeCrBSiNbW alloy coatings deposited on the 6061-T6 aluminum alloy. Splat formation and microstructure, including solid-liquid two-phase droplet impacting the coating deposition, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polmear, I., et al. (2017). The light metals. In Light alloys. Metallurgy of the light metals. Amsterdam: Elsevier, Butterworth-Heinemann.

    Google Scholar 

  2. Lopez, A. J., et al. (2015). Optimisation of the high velocity oxygen fuel (HVOF) parameters to produce effective corrosion control coatings on AZ91 magnesium alloy. Materials and Corrosion, 66(5), 423–433.

    Google Scholar 

  3. Bonnah, R. C., Fu, Y., & Hao, H. (2019). Microstructure and mechanical properties of AZ91 magnesium alloy with minor additions of Sm, Si and Ca elements. China Foundry, 16(5), 319–325.

    Google Scholar 

  4. Lu, X., et al. (2019). Investigation of protective performance of a Mg-rich primer containing aluminum tri-polyphosphate on AZ91D magnesium alloy in simulated acid rain. Coatings, 9(10), 649.

    CAS  Google Scholar 

  5. Li, C. J. (2010). Thermal spraying of light alloys. In H. Dong (Ed.), Surface engineering of light alloys. Cambridge, UK: Woodhead Publishing Limited.

    Google Scholar 

  6. Christopher, C., & Berndt, W. J. L. (2004). In J. R. Davis (Ed.), Handbook of thermal spray technology. Materials Park: ASM International.

    Google Scholar 

  7. Arrabal, R., et al. (2010). Al/SiC thermal spray coatings for corrosion protection of Mg–Al alloys in humid and saline environments. Surface and Coatings Technology, 204(16–17), 2767–2774.

    CAS  Google Scholar 

  8. Oksa, M., et al. (2011). Optimization and characterization of high velocity oxy-fuel sprayed coatings: Techniques, materials, and applications. Coatings, 1(1), 17–52.

    Google Scholar 

  9. Arizmendi-Morquecho, A., et al. (2014). Microstructural characterization and wear properties of Fe-based amorphous-crystalline coating deposited by twin wire arc spraying. Advances in Materials Science and Engineering, 2014, 1–11.

    Google Scholar 

  10. Yin, S., et al. (2018). Cold-sprayed metal coatings with nanostructure. Advances in Materials Science and Engineering, 2018, 1–19.

    Google Scholar 

  11. Fanicchia, F., et al. (2018). Residual stress and adhesion of thermal spray coatings: Microscopic view by solidification and crystallisation analysis in the epitaxial CoNiCrAlY single splat. Materials & Design, 153, 36–46.

    CAS  Google Scholar 

  12. Rachidi, R., El Kihel, B., & Delaunois, F. (2019). Microstructure and mechanical characterization of NiCrBSi alloy and NiCrBSi-WC composite coatings produced by flame spraying. Materials Science and Engineering B, 241, 13–21.

    CAS  Google Scholar 

  13. Fanicchia, F., et al. (2017). Combustion flame spray of CoNiCrAlY & YSZ coatings. Surface and Coatings Technology, 315, 546–557.

    CAS  Google Scholar 

  14. Ziewiec, K., et al. (2017). Thermal characteristics and amorphization in plasma spray deposition of Ni-Si-B-Ag alloy. Journal of Alloys and Compounds, 710, 685–691.

    CAS  Google Scholar 

  15. Cheng, J. B., Wang, Z. H., & Xu, B. S. (2012). Wear and corrosion behaviors of FeCrBSiNbW amorphous/nanocrystalline coating prepared by arc spraying process. Journal of Thermal Spray Technology, 21(5), 1025–1031.

    CAS  Google Scholar 

  16. Adamiak, M., et al. (2018). The properties of arc-sprayed aluminum coatings on armor-grade steel. Metals, 8(2), 142.

    Google Scholar 

  17. Lee, H.-S., et al. (2016). Corrosion resistance properties of aluminum coating applied by arc thermal metal spray in SAE J2334 solution with exposure periods. Metals, 6(3), 55.

    Google Scholar 

  18. Yung, T.-Y., et al. (2019). Thermal spray coatings of Al, ZnAl and inconel 625 alloys on SS304L for anti-saline corrosion. Coatings, 9(1), 32.

    Google Scholar 

  19. Varol Özkavak, H., et al. (2019). Comparison of wear properties of HVOF sprayed WC-Co and WC-CoCr coatings on Al alloys. Materials Research Express, 6(9), 096554.

    Google Scholar 

  20. Cavaliere, P., & Silvello, A. (2017). Crack repair in aerospace aluminum alloy panels by cold spray. Journal of Thermal Spray Technology, 26(4), 661–670.

    CAS  Google Scholar 

  21. Pathak, S., & Saha, G. (2017). Development of sustainable cold spray coatings and 3D additive manufacturing components for repair/manufacturing applications: A critical review. Coatings, 7(8), 122.

    Google Scholar 

  22. Coddet, P., et al. (2016). On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray. Materials Science and Engineering A, 662, 72–79.

    CAS  Google Scholar 

  23. Cavaliere, P. (2018). Cold-spray coatings. Recent trends and future perspectives. Berlin: Springer Nature.

    Google Scholar 

  24. Chang, Y., et al. (2020). Microstructure and properties of Cu–Cr coatings deposited by cold spraying. Vacuum, 171, 109032.

    CAS  Google Scholar 

  25. Dayani, S. B., et al. (2018). The impact of AA7075 cold spray coating on the fatigue life of AZ31B cast alloy. Surface and Coatings Technology, 337, 150–158.

    CAS  Google Scholar 

  26. Joost, W. J., & Krajewski, P. E. (2017). Towards magnesium alloys for high-volume automotive applications. Scripta Materialia, 128, 107–112.

    CAS  Google Scholar 

  27. Jahed, H., & Albinmousa, J. (2014). Multiaxial behaviour of wrought magnesium alloys – A review and suitability of energy-based fatigue life model. Theoretical and Applied Fracture Mechanics, 73, 97–108.

    CAS  Google Scholar 

  28. Liu, J., et al. (2017). Research and development status of laser cladding on magnesium alloys: A review. Optics and Lasers in Engineering, 93, 195–210.

    Google Scholar 

  29. Pardo, A., et al. (2009). Corrosion protection of Mg/Al alloys by thermal sprayed aluminium coatings. Applied Surface Science, 255(15), 6968–6977.

    CAS  Google Scholar 

  30. Diab, M., Pang, X., & Jahed, H. (2017). The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3% Al-1% Zn) extrusion. Surface and Coatings Technology, 309, 423–435.

    CAS  Google Scholar 

  31. Rokni, M. R., et al. (2015). An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition. Materials Science and Engineering A, 625, 19–27.

    CAS  Google Scholar 

  32. Shayegan, G., et al. (2014). Residual stress induced by cold spray coating of magnesium AZ31B extrusion. Materials & Design, 60, 72–84.

    CAS  Google Scholar 

  33. Wang, Q., et al. (2014). High resolution microstructure characterization of the interface between cold sprayed Al coating and Mg alloy substrate. Applied Surface Science, 289, 366–369.

    CAS  Google Scholar 

  34. Petráčková, K., Kondás, J., & Guagliano, M. (2017). Mechanical performance of cold-sprayed A357 aluminum alloy coatings for repair and additive manufacturing. Journal of Thermal Spray Technology, 26(8), 1888–1897.

    Google Scholar 

  35. Nautiyal, P., et al. (2018). In-situ mechanical investigation of the deformation of splat interfaces in cold-sprayed aluminum alloy. Materials Science and Engineering A, 737, 297–309.

    CAS  Google Scholar 

  36. Watson, T. J., et al. (2017). Cold spray deposition of an icosahedral-phase-strengthened aluminum alloy coating. Surface and Coatings Technology, 324, 57–63.

    CAS  Google Scholar 

  37. Sabard, A., et al. (2020). Cold spray deposition of solution heat treated, artificially aged and naturally aged Al 7075 powder. Surface and Coatings Technology, 385, 125367.

    CAS  Google Scholar 

  38. López, A. J., et al. (2013). Influence of high velocity oxygen-fuel spraying parameters on the wear resistance of Al–SiC composite coatings deposited on ZE41A magnesium alloy. Materials & Design, 43, 144–152.

    Google Scholar 

  39. Koutsomichalis, A., Vardavoulias, M., & Vaxevanidis, N. (2017). HVOF sprayed WC-CoCr coatings on aluminum: Tensile and tribological properties. IOP Conference Series: Materials Science and Engineering, 174, 012062.

    Google Scholar 

  40. Bao, Y., et al. (2013). Thermal-spray deposition of enamel on aluminium alloys. Surface and Coatings Technology, 232, 150–158.

    CAS  Google Scholar 

  41. Kubatík, T. F., et al. (2017). Mechanical properties of plasma-sprayed layers of aluminium and aluminium alloy on AZ 91. Materiali in Tehnologije, 51(2), 323–327.

    Google Scholar 

  42. Yoshio Shin, Y. O., Morimoto, T., Kumai, T., & Yanagida, A. (2016). Formation of nano-microstructured aluminum alloy film using thermal spray gun with ultra rapid cooling. Materials Transactions, 57(4), 488–493.

    Google Scholar 

  43. Tailor, S., Mohanty, R. M., & Soni, P. R. (2013). A review on plasma sprayed Al-SiC composite coatings. Journal of Materials Science & Surface Engineering, 1(1), 15–22.

    Google Scholar 

  44. Wang, Q., et al. (2019). Bonding and wear behaviors of supersonic plasma sprayed Fe-based coatings on Al-Si alloy substrate. Surface and Coatings Technology, 367, 288–301.

    CAS  Google Scholar 

  45. Movahedi, B., Enayati, M. H., & Wong, C. C. (2010). Structural and thermal behavior of Fe-Cr-Mo-P-B-C-Si amorphous and nanocrystalline HVOF coatings. Journal of Thermal Spray Technology, 19(5), 1093–1099.

    CAS  Google Scholar 

  46. Chokethawai, K., McCartney, D. G., & Shipway, P. H. (2009). Microstructure evolution and thermal stability of an Fe-based amorphous alloy powder and thermally sprayed coatings. Journal of Alloys and Compounds, 480(2), 351–359.

    CAS  Google Scholar 

  47. Li, J., et al. (2018). Synthesis of bulk amorphous alloy from Fe-base powders by explosive consolidation. Metals, 8(9), 727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herrera Ramirez, J.M., Perez Bustamante, R., Isaza Merino, C.A., Arizmendi Morquecho, A.M. (2020). Thermal Spray Coatings. In: Unconventional Techniques for the Production of Light Alloys and Composites. Springer, Cham. https://doi.org/10.1007/978-3-030-48122-3_7

Download citation

Publish with us

Policies and ethics