Skip to main content

Abstract

The constant innovation of the modern aeronautical and aerospace industries demands the use of better and lighter materials, which represents the most efficient way to reduce the weight of structural components and devices. To achieve this, increasing the resistance-weight ratio implies the use of improved techniques and processing methods for the component manufacturing, which are mainly mass-produced from light alloys and composites, directly impacting the best aircraft performance. This chapter is dedicated to provide a brief description of various types of lightweight materials and composites currently in use, which have been shown to be able of conferring improved properties when they are produced by unconventional processing techniques. For composites materials, the chapter describes some of the most used reinforcement constituents for industrial applications. A brief explanation of various processes for manufacturing lightweight materials and composites, as well as some conventional and sophisticated characterization techniques to evaluate them is afforded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peel, C., & Gregson, P. (1995). Design requirements for aerospace structural materials. In H. M. Flower (Ed.), High performance materials in aerospace. Dordrecht: Springer.

    Google Scholar 

  2. Ekvall, J., Rhodes, J., & Wald, G. (1982). Methodology for evaluating weight savings from basic material properties. In Design of fatigue and fracture resistant structures. Philadelphia: ASTM International.

    Google Scholar 

  3. Polmear, I., et al. (2017). Light alloys: Metallurgy of the light metals. Butterworth-Heinemann.

    Google Scholar 

  4. Dumitraschkewitz, P., et al. (2018). Clustering in age-hardenable aluminum alloys. Advanced Engineering Materials, 20(10), 1800255.

    Article  Google Scholar 

  5. Prasad, N. E., Gokhale, A. A., & Wanhill, R. (2017). Aluminium–lithium alloys. In Aerospace materials and material technologies. Springer.

    Google Scholar 

  6. Williams, J. C., & Starke, E. A., Jr. (2003). Progress in structural materials for aerospace systems. Acta Materialia, 51(19), 5775–5799.

    Article  CAS  Google Scholar 

  7. Faruk, O., Tjong, J., & Sain, M. (2017). Lightweight and sustainable materials for automotive applications. CRC Press.

    Google Scholar 

  8. Chawla, K. K. (2003). Ceramic matrix materials. In Ceramic matrix composites. Boston: Springer.

    Chapter  Google Scholar 

  9. Benjamin, J. S. (1970). Dispersion strengthened superalloys by mechanical alloying. Metallurgical Transactions, 1(10), 2943–2951.

    CAS  Google Scholar 

  10. Clinktan, R., et al. (2019). Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceramics International, 45(3), 3492–3501.

    Article  CAS  Google Scholar 

  11. Chen, C.-L., & Lin, C.-H. (2019). In-situ dispersed La oxides of Al6061 composites by mechanical alloying. Journal of Alloys and Compounds, 775, 1156–1163.

    Article  CAS  Google Scholar 

  12. Suryanarayana, C. (2011). Synthesis of nanocomposites by mechanical alloying. Journal of Alloys and Compounds, 509, S229–S234.

    Article  CAS  Google Scholar 

  13. Suryanarayana, C., Ivanov, E., & Boldyrev, V. (2001). The science and technology of mechanical alloying. Materials Science and Engineering: A, 304, 151–158.

    Article  Google Scholar 

  14. Sundaresan, R., & Froes, F. (1987). Mechanical alloying. JOM, 39(8), 22–27.

    Article  CAS  Google Scholar 

  15. Froes, F. (1990). The structural applications of mechanical alloying. JOM Journal of the Minerals, Metals and Materials Society, 42(12), 24–25.

    Article  Google Scholar 

  16. Mehrizi, M. Z., & Beygi, R. (2018). Direct synthesis of Ti3AlC2-Al2O3 nanocomposite by mechanical alloying. Journal of Alloys and Compounds, 740, 118–123.

    Article  Google Scholar 

  17. Luo, X.-T., Yang, G.-J., & Li, C.-J. (2012). Preparation of cBNp/NiCrAl nanostructured composite powders by a step-fashion mechanical alloying process. Powder Technology, 217, 591–598.

    Article  CAS  Google Scholar 

  18. Wang, J., et al. (2013). In situ synthesis of Ti2AlC–Al2O3/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs. Journal of Alloys and Compounds, 578, 481–487.

    Article  CAS  Google Scholar 

  19. Karak, S., et al. (2018). Development of nano-Y2O3 dispersed Zr alloys synthesized by mechanical alloying and consolidated by pulse plasma sintering. Materials Characterization, 136, 337–345.

    Article  CAS  Google Scholar 

  20. Pérez-Bustamante, R., et al. (2017). The effect of heat treatment on microstructure evolution in artificially aged carbon nanotube/Al2024 composites synthesized by mechanical alloying. Materials Characterization, 126, 28–34.

    Article  Google Scholar 

  21. Prosviryakov, A., Samoshina, M., & Popov, V. (2012). Structure and properties of composite materials based on copper strengthened with diamond nanoparticles by mechanical alloying. Metal Science and Heat Treatment, 54(5–6), 298–302.

    Article  CAS  Google Scholar 

  22. Prosviryakov, A. (2015). Mechanical alloying of aluminum alloy with nanodiamond particles. Russian Journal of Non-Ferrous Metals, 56(1), 92–96.

    Article  Google Scholar 

  23. Salas, W., Alba-Baena, N., & Murr, L. (2007). Explosive shock-wave consolidation of aluminum powder/carbon nanotube aggregate mixtures: Optical and electron metallography. Metallurgical and Materials Transactions A, 38(12), 2928–2935.

    Article  Google Scholar 

  24. Li, Y.-H., et al. (2007). Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing. Nanotechnology, 18(20), 205607.

    Article  Google Scholar 

  25. Yang, L., et al. (2016). Deformation mechanisms of ultra-thin Al layers in Al/SiC nanolaminates as a function of thickness and temperature. Philosophical Magazine, 96(32–34), 3336–3355.

    Article  CAS  Google Scholar 

  26. Isaza Merino, C. A. (2017). Study of the interface-interphase of a Mg-CNT composite made by an alternative sandwich technique. Medellin: Universidad Nacional de Colombia–Sede Medellin.

    Google Scholar 

  27. Azushima, A., et al. (2008). Severe plastic deformation (SPD) processes for metals. CIRP Annals, 57(2), 716–735.

    Article  Google Scholar 

  28. Valiev, R. Z., Zhilyaev, A. P., & Langdon, T. G. (2013). Bulk nanostructured materials: Fundamentals and applications. Wiley.

    Google Scholar 

  29. Milewski, J. O. (2017). Additive manufacturing metal, the art of the possible. In Additive manufacturing of metals. Springer: Cham.

    Chapter  Google Scholar 

  30. Gonzalez, J., et al. (2019). Characterization of Inconel 625 fabricated using powder-bed-based additive manufacturing technologies. Journal of Materials Processing Technology, 264, 200–210.

    Article  CAS  Google Scholar 

  31. Kumar, L., & Nair, C. K. (2017). Current trends of additive manufacturing in the aerospace industry. In D. Wimpenny, P. Pandey, & L. J. Kumar (Eds.), Advances in 3D printing & additive manufacturing technologies. Singapore: Springer.

    Google Scholar 

  32. Petrovic, V., Vicente Haro Gonzalez, J., Jorda Ferrando, O., Delgado Gordillo, J., Ramon Blasco Puchades, J., & Portoles Grinan, L. (2011). Additive layered manufacturing: Sectors of industrial application shown through case studies. International Journal of Production Research, 49(4), 1061–1079.

    Article  Google Scholar 

  33. Pérez-Sánchez, A., et al. (2018). Fatigue behaviour and equivalent diameter of single Ti-6Al-4V struts fabricated by Electron Beam Melting orientated to porous lattice structures. Materials & Design, 155, 106–115.

    Article  Google Scholar 

  34. Um, J., et al. (2017). STEP-NC compliant process planning of additive manufacturing: Remanufacturing. The International Journal of Advanced Manufacturing Technology, 88(5–8), 1215–1230.

    Article  Google Scholar 

  35. Berndt, C. C., & Lenling, W. J. (2004). Handbook of thermal spray technology, ed. J.R. Davis. USA: ASM international.

    Google Scholar 

  36. Vuoristo, P. (2014) Thermal spray coating processes, in Comprehensive materials processing, ed. D. Cameron. Elsevier.

    Google Scholar 

  37. Bakshi, S. R., et al. (2009). Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surface and Coatings Technology, 203(10–11), 1544–1554.

    Article  CAS  Google Scholar 

  38. Yin, S., et al. (2018). Cold-sprayed metal coatings with nanostructure. Advances in Materials Science and Engineering, 2018, 1–19.

    Article  Google Scholar 

  39. Schwartz, M. M. (1997). Composite materials: processing, fabrication, and applications (Vol. 2). Prentice Hall.

    Google Scholar 

  40. Desai, A., & Haque, M. (2005). Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Structures, 43(11), 1787–1803.

    Article  Google Scholar 

  41. Peter, I., & Rosso, M. (2015). Light alloys-From traditional to innovative technologies. In Z. Ahmad (Ed.), New trends in alloy development, characterization and application. IntechOpen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herrera Ramirez, J.M., Perez Bustamante, R., Isaza Merino, C.A., Arizmendi Morquecho, A.M. (2020). Introduction. In: Unconventional Techniques for the Production of Light Alloys and Composites. Springer, Cham. https://doi.org/10.1007/978-3-030-48122-3_1

Download citation

Publish with us

Policies and ethics