Skip to main content

Fluorescent Probes for Applications in Bioimaging

  • Conference paper
  • First Online:
Advances in Bionanomaterials II (BIONAM 2019 2019)

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Included in the following conference series:

Abstract

Optical bioimaging has played a central role in fundamental research and clinical practice. The signals emitted by biological tissues can provide molecular information about various physiological and pathophysiological processes. NIR light (650–1700 nm) can penetrate the blood and biological tissues more profoundly and effectively because, at longer wavelengths, less light is diffused and absorbed. Therefore, many probes have been developed for bioimaging in the NIR window for real-time, high-sensitivity deep tissue imaging. The library of optical probes has been expanded in recent years to include a wide range of probes with emission in the Red-NIR window. The emergence of these new contrast media has provided an essential alternative for realizing the full potential of bioimaging. The most recent advances in small molecule potential probes for detection and imaging in biological systems are examined below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman, R., et al.: Understanding conformational dynamics of complex lipid mixtures relevant to biology. J. Membr. Biol. 251(5–6), 609–631 (2018)

    Article  Google Scholar 

  2. Chan, J., Dodani, S.C., Chang, C.J.: Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 4(12), 973 (2012)

    Article  Google Scholar 

  3. Terai, T., Nagano, T.: Fluorescent probes for bioimaging applications. Curr. Opin. Chem. Biol. 12(5), 515–521 (2008)

    Article  Google Scholar 

  4. Yang, Z., et al.: Highly selective red-and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells. Chem. Commun. 48(28), 3442–3444 (2012)

    Article  Google Scholar 

  5. Terai, T., Nagano, T.: Small-molecule fluorophores and fluorescent probes for bioimaging. Pflügers Archiv-Eur. J. Physiol. 465(3), 347–359 (2013)

    Article  Google Scholar 

  6. Kiyose, K., Kojima, H., Nagano, T.: Functional near-infrared fluorescent probes. Chem.–Asian J. 3(3), 506–515 (2008)

    Article  Google Scholar 

  7. Miyawaki, A., Niino, Y.: Molecular spies for bioimaging—fluorescent protein-based probes. Mol. Cell 58(4), 632–643 (2015)

    Article  Google Scholar 

  8. Saito, K., Nagai, T.: Recent progress in luminescent proteins development. Curr. Opin. Chem. Biol. 27, 46–51 (2015)

    Article  Google Scholar 

  9. Panunzi, B., et al.: Photophysical properties of luminescent zinc(II)-pyridinyloxadiazole complexes and their glassy self-assembly networks. Eur. J. Inorg. Chem. 2018(23), 2709–2716 (2018)

    Article  Google Scholar 

  10. Leblond, F., et al.: Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J. Photochem. Photobiol. B: Biol. 98(1), 77–94 (2010)

    Article  Google Scholar 

  11. Guo, Z., et al.: Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 43(1), 16–29 (2014)

    Article  Google Scholar 

  12. Concilio, S., et al.: Zn-complex based on oxadiazole/carbazole structure: Synthesis, optical and electric properties. Thin Solid Films 556, 419–424 (2014)

    Article  Google Scholar 

  13. Escobedo, J.O., et al.: NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 14(1), 64–70 (2010)

    Article  Google Scholar 

  14. Li, J.-B., Liu, H.-W., Fu, T., Wang, R., Zhang, X.-B., Tan, W.: Recent progress in small-molecule near-IR probes for bioimaging. Trends Chem. 1(2), 224–234 (2019)

    Article  Google Scholar 

  15. Nagano, T.: Development of fluorescent probes for bioimaging applications. Proc. Jpn. Acad. Ser. B 86(8), 837–847 (2010)

    Article  Google Scholar 

  16. Yuan, L., et al.: FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc. Chem. Res. 46(7), 1462–1473 (2013)

    Article  Google Scholar 

  17. Antaris, A.L., et al.: A small-molecule dye for NIR-II imaging. Nat. Mater. 15(2), 235 (2016)

    Article  Google Scholar 

  18. Concilio, S., et al.: A novel fluorescent solvatochromic probe for lipid bilayers. Supramol. Chem. 29(11), 887–895 (2017)

    Article  Google Scholar 

  19. Diana, R., et al.: A real-time tripodal colorimetric/fluorescence sensor for multiple target metal ions. Dyes Pigm. 155, 249–257 (2018)

    Article  Google Scholar 

  20. Diana, R., Panunzi, B., Tuzi, A., Piotto, S., Concilio, S., Caruso, U.: An amphiphilic pyridinoyl-hydrazone probe for colorimetric and fluorescence pH sensing. Molecules 24(21), 3833–3855 (2019)

    Article  Google Scholar 

  21. Panunzi, B., et al.: Fluorescence pH-dependent sensing of Zn(II)by a tripodal ligand. A comparative X-ray and DFT study. J. Lumin. 212, 200–206 (2019)

    Article  Google Scholar 

  22. Oelkrug, D., et al.: Tuning of fluorescence in films and nanoparticles of oligophenylenevinylenes. J. Phys. Chem. B 102(11), 1902–1907 (1998)

    Article  Google Scholar 

  23. Luo, J., et al.: Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 18, 1740–1741 (2001)

    Article  Google Scholar 

  24. Yuan, L., et al.: Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev. 42(2), 622–661 (2013)

    Article  Google Scholar 

  25. Kaur, M., Choi, D.H.: Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications. Chem. Soc. Rev. 44(1), 58–77 (2015)

    Article  Google Scholar 

  26. Yin, J., et al.: Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J. Am. Chem. Soc. 136(14), 5351–5358 (2014)

    Article  Google Scholar 

  27. Oushiki, D., et al.: Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. J. Am. Chem. Soc. 132(8), 2795–2801 (2010)

    Article  Google Scholar 

  28. Hirayama, T., et al.: Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc. Natl. Acad. Sci. 109(7), 2228–2233 (2012)

    Article  Google Scholar 

  29. Guo, Z., et al.: A cyanine-based fluorescent sensor for detecting endogenous zinc ions in live cells and organisms. Biomaterials 33(31), 7818–7827 (2012)

    Article  Google Scholar 

  30. Tang, B., et al.: A sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications. ChemBioChem 9(7), 1159–1164 (2008)

    Article  Google Scholar 

  31. Li, P., et al.: A near-infrared fluorescent probe for detecting copper (II) with high selectivity and sensitivity and its biological imaging applications. Chem. Commun. 47(27), 7755–7757 (2011)

    Article  Google Scholar 

  32. Yang, Y., et al.: Highly selective and sensitive near-infrared fluorescent sensors for cadmium in aqueous solution. Org. Lett. 13(2), 264–267 (2010)

    Article  MathSciNet  Google Scholar 

  33. Zheng, H., et al.: A heptamethine cyanine-based colorimetric and ratiometric fluorescent chemosensor for the selective detection of Ag+ in an aqueous medium. Chem. Commun. 48(16), 2243–2245 (2012)

    Article  Google Scholar 

  34. Li, Y., et al.: Hemicyanine-based high resolution ratiometric near-infrared fluorescent probe for monitoring pH changes in vivo. Anal. Chem. 87(4), 2495–2503 (2015)

    Article  Google Scholar 

  35. He, L., et al.: A unique type of pyrrole-based cyanine fluorophores with turn-on and ratiometric fluorescence signals at different pH regions for sensing pH in enzymes and living cells. ACS Appl. Mater. Interfaces 6(24), 22326–22333 (2014)

    Article  Google Scholar 

  36. Fang, M., et al.: A cyanine-based fluorescent cassette with aggregation-induced emission for sensitive detection of pH changes in live cells. Chem. Commun. 54(9), 1133–1136 (2018)

    Article  Google Scholar 

  37. Han, J., Burgess, K.: Fluorescent indicators for intracellular pH. Chem. Rev. 110(5), 2709–2728 (2009)

    Article  Google Scholar 

  38. Hilderbrand, S.A., Weissleder, R.: Optimized pH-responsive cyanine fluorochromes for detection of acidic environments. Chem. Commun. 26, 2747–2749 (2007)

    Article  Google Scholar 

  39. Myochin, T., et al.: Rational design of ratiometric near-infrared fluorescent pH probes with various pKa values, based on aminocyanine. J. Am. Chem. Soc. 133(10), 3401–3409 (2011)

    Article  Google Scholar 

  40. Sethna, S.M., Shah, N.M.: The chemistry of coumarins. Chem. Rev. 36(1), 1–62 (1945)

    Article  Google Scholar 

  41. Thakur, A., Singla, R., Jaitak, V.: Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 101, 476–495 (2015)

    Article  Google Scholar 

  42. Jung, Y., et al.: Benzo[g]coumarin-based fluorescent probes for bioimaging applications. J. Anal. Methods Chem. 2018, 11 (2018)

    Article  Google Scholar 

  43. Kang, D.E., et al.: Two-photon probe for Cu2+ with an internal reference: quantitative estimation of Cu2+ in human tissues by two-photon microscopy. Anal. Chem. 86(11), 5353–5359 (2014)

    Article  Google Scholar 

  44. Sarkar, A.R., et al.: Red emissive two-photon probe for real-time imaging of mitochondria trafficking. Anal. Chem. 86(12), 5638–5641 (2014)

    Article  Google Scholar 

  45. Sarkar, A.R., et al.: A ratiometric two-photon probe for quantitative imaging of mitochondrial pH values. Chem. Sci. 7(1), 766–773 (2016)

    Article  Google Scholar 

  46. Ni, Y., Wu, J.: Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org. Biomol. Chem. 12(23), 3774–3791 (2014)

    Article  Google Scholar 

  47. Matsui, A., et al.: A near-infrared fluorescent calcium probe: a new tool for intracellular multicolour Ca2+ imaging. Chem. Commun. 47(37), 10407–10409 (2011)

    Article  Google Scholar 

  48. Cao, J., et al.: Target-triggered deprotonation of 6-hydroxyindole-based BODIPY: specially switch on NIR fluorescence upon selectively binding to Zn2+. Chem. Commun. 48(79), 9897–9899 (2012)

    Article  Google Scholar 

  49. Coskun, A., Yilmaz, M.D., Akkaya, E.U.: Bis (2-pyridyl)-substituted boratriazaindacene as an NIR-emitting chemosensor for Hg (II). Org. Lett. 9(4), 607–609 (2007)

    Article  Google Scholar 

  50. McDonnell, S.O., O’Shea, D.F.: Near-infrared sensing properties of dimethlyamino-substituted BF2−azadipyrromethenes. Org. Lett. 8(16), 3493–3496 (2006)

    Article  Google Scholar 

  51. Madhu, S., Gonnade, R., Ravikanth, M.: Synthesis of 3, 5-bis (acrylaldehyde) boron-dipyrromethene and application in detection of cysteine and homocysteine in living cells. J. Org. Chem. 78(10), 5056–5060 (2013)

    Article  Google Scholar 

  52. Zhao, J., Zhong, D., Zhou, S.: NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 6(3), 349–365 (2018)

    Article  Google Scholar 

  53. Zhang, X., et al.: Near-infrared molecular probes for in vivo imaging. Curr. Protoc. Cytometry 60(1), 12.27.1–12.27.20 (2012)

    Google Scholar 

  54. Zhu, S., et al.: Near-infrared-II (NIR-II) bioimaging via off-peak NIR-I fluorescence emission. Theranostics 8(15), 4141 (2018)

    Article  Google Scholar 

  55. Cui, M., et al.: Smart near-infrared fluorescence probes with donor–acceptor structure for in vivo detection of β-amyloid deposits. J. Am. Chem. Soc. 136(9), 3388–3394 (2014)

    Article  Google Scholar 

  56. Li, Y., et al.: Novel D–A–D based near-infrared probes for the detection of β-amyloid and Tau fibrils in Alzheimer’s disease. Chem. Commun. 54(63), 8717–8720 (2018)

    Article  Google Scholar 

  57. Kim, M., et al.: A distyrylbenzene based highly efficient deep red/near-infrared emitting organic solid. J. Mater. Chem. C 3(2), 231–234 (2015)

    Article  Google Scholar 

  58. Borbone, F., et al.: On–off mechano-responsive switching of ESIPT luminescence in polymorphic N-salicylidene-4-amino-2-methylbenzotriazole. Cryst. Growth Des. 17(10), 5517–5523 (2017)

    Article  Google Scholar 

  59. Shi, J., et al.: Solid state luminescence enhancement in π-conjugated materials: unraveling the mechanism beyond the framework of AIE/AIEE. J. Phys. Chem. C 121(41), 23166–23183 (2017)

    Article  Google Scholar 

  60. Panunzi, B., et al.: Solid-state highly efficient DR mono and poly-dicyano-phenylenevinylene fluorophores. Molecules 23(7), 1505 (2018)

    Article  Google Scholar 

  61. Caruso, U., et al.: AIE/ACQ effects in two DR/NIR emitters: a structural and DFT comparative analysis. Molecules 23(8), 1947 (2018)

    Article  Google Scholar 

  62. Diana, R., et al.: Highly efficient dicyano-phenylenevinylene fluorophore as polymer dopant or zinc-driven self-assembling building block. Inorg. Chem. Commun. 104, 145–149 (2019)

    Article  Google Scholar 

  63. Diana, R., et al.: The effect of bulky substituents on two π-conjugated mesogenic fluorophores. Their organic polymers and zinc-bridged luminescent networks. Polymers 11(9), 1379 (2019)

    Article  Google Scholar 

  64. Lu, H., et al.: Highly efficient far red/near-infrared solid fluorophores: aggregation-induced emission, intramolecular charge transfer, twisted molecular conformation, and bioimaging applications. Angew. Chem. Int. Ed. 55(1), 155–159 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Concilio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Martino, M., Marrafino, F., Diana, R., Iannelli, P., Concilio, S. (2020). Fluorescent Probes for Applications in Bioimaging. In: Piotto, S., Concilio, S., Sessa, L., Rossi, F. (eds) Advances in Bionanomaterials II. BIONAM 2019 2019. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-47705-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47705-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47704-2

  • Online ISBN: 978-3-030-47705-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics