Skip to main content

Abstract

Cryopreservation of oocytes and ovarian tissue as well as the administration of GnRH agonists and transposition of the ovaries are well established as fertility preservation methods. In addition, there are alternative techniques that are less well established or still experimental. These techniques include medication to protect the ovaries, such as AS101, CIP and AMH, measures to use the ovarian tissue in patients with leukaemia and other diseases with a high risk of malignant cells in the ovarian tissue such as xenotransplantation, IVG and artificial ovaries, stem cells and uterus transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roesner S, von Wolff M, Elsaesser M, Roesner K, Reuner G, Pietz J, Bruckner T, Strowitzki T. Two-year development of children conceived by IVM: a prospective controlled single-blinded study. Hum Reprod. 2017;32:1341–50. https://doi.org/10.1093/humrep/dex068.

    Article  PubMed  CAS  Google Scholar 

  2. Grynberg M, Poulain M, le Parco S, Sifer C, Fanchin R, Frydman N. Similar in vitro maturation rates of oocytes retrieved during the follicular or luteal phase offer flexible options for urgent fertility preservation in breast cancer patients. Hum Reprod. 2016;31:623–9. https://doi.org/10.1093/humrep/dev325.

    Article  PubMed  CAS  Google Scholar 

  3. Quinn MM, Cakmak H, Letourneau JM, Cedars MI, Rosen MP. Response to ovarian stimulation is not impacted by a breast cancer diagnosis. Hum Reprod. 2017;32:568–74. https://doi.org/10.1093/humrep/dew355.

    Article  PubMed  CAS  Google Scholar 

  4. von Wolff M, Bruckner T, Strowitzki T, Germeyer A. Fertility preservation: ovarian response to freeze oocytes is not affected by different malignant diseases-an analysis of 992 stimulations. J Assist Reprod Genet. 2018;35:1713–9. https://doi.org/10.1007/s10815-018-1227-0.

    Article  Google Scholar 

  5. Cao YX, Chian RC. Fertility preservation with immature and in vitro matured oocytes. Semin Reprod Med. 2009;27:456–64. https://doi.org/10.1055/s-0029-1241055.

    Article  PubMed  Google Scholar 

  6. Roesner S, Von Wolff M, Eberhardt I, Beuter-Winkler P, Toth B, Strowitzki T. In vitro maturation: a five-year experience. Acta Obstet Gynecol Scand. 2012;91:22–7. https://doi.org/10.1111/j.1600-0412.2011.01299.

    Article  PubMed  Google Scholar 

  7. Huang JY, Tulandi T, Holzer H, Tan SL, Chian RC. Combining ovarian tissue cryobanking with retrieval of immature oocytes followed by in vitro maturation and vitrification: an additional strategy of fertility preservation. Fertil Steril. 2008;89:567–72.

    Article  Google Scholar 

  8. Uzelac PS, Delaney AA, Christensen GL, Bohler HC, Nakajima ST. Live birth following in vitro maturation of oocytes retrieved from extracorporeal ovarian tissue aspiration and embryo cryopreservation for 5 years. Fertil Steril. 2015;104:1259–60. https://doi.org/10.1016/j.fertnstert.2015.07.1148.

    Article  Google Scholar 

  9. Abir R, Ben-Aharon I, Garor R, Yaniv I, Ash S, Stemmer SM, Ben-Haroush A, Freud E, Kravarusic D, Sapir O, Fisch B. Cryopreservation of in vitro matured oocytes in addition to ovarian tissue freezing for fertility preservation in paediatric female cancer patients before and after cancer therapy. Hum Reprod. 2016;31:750–62. https://doi.org/10.1093/humrep/dew007.

    Article  PubMed  CAS  Google Scholar 

  10. Duncan FE. Egg quality during the pubertal transition - is youth all it’s cracked up to be? Front Endocrinol (Lausanne). 2017;8:226. https://doi.org/10.3389/fendo.2017.00226.

    Article  Google Scholar 

  11. Sredni B, Caspi RR, Klein A, Kalechman Y, Danziger Y, Ben Ya’akov M, Tamari T, Shalit F, Albeck M. A new immunomodulating compound (AS-101) with potential therapeutic application. Nature. 1987;330:173–6.

    Article  CAS  Google Scholar 

  12. Sredni B. Immunomodulating tellurium compounds as anti-cancer agents. Semin Cancer Biol. 2012;22:60–9. https://doi.org/10.1016/j.semcancer.2011.12.003.

    Article  PubMed  CAS  Google Scholar 

  13. Carmely A, Meirow D, Peretz A, Albeck M, Bartoov B, Sredni B. Protective effect of the immunomodulator AS101 against cyclophosphamide-induced testicular damage in mice. Hum Reprod. 2009;24:1322–9. https://doi.org/10.1093/humrep/den481.

    Article  PubMed  CAS  Google Scholar 

  14. Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Ligumsky H, Paglin S, Wolf I, Kanety H, Sredni B, Meirow D. Cyclophosphamide triggers follicle activation and "burnout"; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5:185ra62. https://doi.org/10.1126/scitranslmed.3005402.

    Article  PubMed  CAS  Google Scholar 

  15. Di Emidio G, Rossi G, Bonomo I, Alonso GL, Sferra R, Vetuschi A, Artini PG, Provenzani A, Falone S, Carta G, D’Alessandro AM, Amicarelli F, Tatone C. The natural carotenoid crocetin and the synthetic tellurium compound AS101 protect the ovary against cyclophosphamide by modulating SIRT1 and mitochondrial markers. Oxidative Med Cell Longev. 2017;2017:8928604. https://doi.org/10.1155/2017/8928604.

    Article  CAS  Google Scholar 

  16. Pascuali N, Scotti L, Di Pietro M, Oubiña G, Bas D, May M, Gómez Muñoz A, Cuasnicú PS, Cohen DJ, Tesone M, Abramovich D, Parborell F. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33:844–9. https://doi.org/10.1093/humrep/dey045.

    Article  PubMed  CAS  Google Scholar 

  17. Sonigo C, Beau I, Grynberg M, Binart N. AMH prevents primordial ovarian follicle loss and fertility alteration in cyclophosphamide-treated mice. FASEB J. 2019;33:1278–87. https://doi.org/10.1096/fj.201801089R.

    Article  PubMed  CAS  Google Scholar 

  18. Roness H, Spector I, Leichtmann-Bardoogo Y, Savino AM, Dereh-Haim S, Meirow D. Pharmacological administration of recombinant human AMH rescues ovarian reserve and preserves fertility in a mouse model of chemotherapy, without interfering with anti-tumoural effects. J Assist Reprod Genet. 2019;36:1793–803. https://doi.org/10.1007/s10815-019-01507-9.

    Article  PubMed  CAS  Google Scholar 

  19. Dittrich R, Lotz L, Fehm T, Krüssel J, von Wolff M, Toth B, van der Ven H, Schüring AN, Würfel W, Hoffmann I, Beckmann MW. Xenotransplantation of cryopreserved human ovarian tissue-a systematic review of MII oocyte maturation and discussion of it as a realistic option for restoring fertility after cancer treatment. Fertil Steril. 2015;103:1557–65. https://doi.org/10.1016/j.fertnstert.2015.03.001.

    Article  PubMed  Google Scholar 

  20. Snow M, Cox SL, Jenkin G, Trounson A, Shaw J. Generation of live young from xenografted mouse ovaries. Science. 2002;297:2227.

    Article  CAS  Google Scholar 

  21. Lotz L, Liebenthron J, Nichols-Burns SM, Montag M, Hoffmann I, Beckmann MW, van der Ven H, Töpfer D, Dittrich R. Spontaneous antral follicle formation and metaphase II oocyte from a non-stimulated prepubertal ovarian tissue xenotransplant. Reprod Biol Endocrinol. 2014;12:41. https://doi.org/10.1186/1477-7827-12-41.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fishman JA, Patience C. Xenotransplantation: infectious risk revisited. Am J Transplant. 2004;4:1383–90.

    Article  Google Scholar 

  23. Telfer EE, Zelinski MB. Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil Steril. 2013;99:1523–33. https://doi.org/10.1016/j.fertnstert.2013.03.043.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McLaughlin M, Albertini DF, Wallace WHB, Anderson RA, Telfer EE. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018;24:135–42. https://doi.org/10.1093/molehr/gay002.

    Article  PubMed  CAS  Google Scholar 

  25. Vanacker J, Dolmans MM, Luyckx V, Donnez J, Amorim CA. First transplantation of isolated murine follicles in alginate. Regen Med. 2014;9:609–19. https://doi.org/10.2217/rme.14.33.

    Article  PubMed  CAS  Google Scholar 

  26. Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun. 2017;8:15261. https://doi.org/10.1038/ncomms15261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chiti MC, Dolmans MM, Mortiaux L, Zhuge F, Ouni E, Shahri PAK, Van Ruymbeke E, Champagne SD, Donnez J, Amorim CA. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J Assist Reprod Genet. 2018;35:41–8. https://doi.org/10.1007/s10815-017-1091-3.

    Article  PubMed  Google Scholar 

  28. Liverani L, Raffel N, Fattahi A, Preis A, Hoffmann I, Boccaccini AR, Beckmann MW, Dittrich R. Electrospun patterned porous scaffolds for the support of ovarian follicles growth: a feasibility study. Sci Rep. 2019;9:1150. https://doi.org/10.1038/s41598-018-37640-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Soares M, Sahrari K, Amorim CA, Saussoy P, Donnez J, Dolmans MM. Evaluation of a human ovarian follicle isolation technique to obtain disease-free follicle suspensions before safely grafting to cancer patients. Fertil Steril. 2015;104:672–680.e2. https://doi.org/10.1016/j.fertnstert.2015.05.021.

    Article  PubMed  Google Scholar 

  30. Telfer EE, Anderson RA. The existence and potential of germline stem cells in the adult mammalian ovary. Climacteric. 2019;22:22–6. https://doi.org/10.1080/13697137.2018.1543264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Brännström M, Enskog A, Kvarnström N, Ayoubi JM, Dahm-Kähler P. Global results of human uterus transplantation and strategies for pre-transplantation screening of donors. Fertil Steril. 2019;112:3–10. https://doi.org/10.1016/j.fertnstert.2019.05.030.

    Article  PubMed  Google Scholar 

  32. Brännström M, Dahm-Kähler P. Uterus transplantation and fertility preservation. Best Pract Res Clin Obstet Gynaecol. 2019;55:109–16. https://doi.org/10.1016/j.bpobgyn.2018.12.006.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dittrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dittrich, R., von Wolff, M. (2020). Further Fertility Preservation Techniques. In: von Wolff, M., Nawroth, F. (eds) Fertility Preservation in Oncological and Non-Oncological Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-47568-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47568-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47567-3

  • Online ISBN: 978-3-030-47568-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics