Skip to main content

Salt Attack, Durability and Service Life of Concrete Structures

  • Chapter
  • First Online:
  • 393 Accesses

Part of the book series: Building Pathology and Rehabilitation ((BUILDING,volume 12))

Abstract

The chapter in this book presents concepts on the durability of concrete structures directly relating to deterioration due to the attack of chloride and sulfate salts. The matter becomes necessary due to the aggressive conditions that the structure may be exposed to. In the case of sulfates, these can be present in soils, acid rain, sewage and the sea. Marine environments, on the other hand, are mainly responsible for the penetration of chlorides in concrete, another situation is the free chloride that can be present in the concrete mass and react when in large quantities. We covered the operation of chloride attack and sulfate attack, the calculation models and related life prediction and some recent studies to understand the behavior of buildings in the long term. This study becomes relevant for understanding the deterioration mechanisms that compromise durability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguiar JE (2014) Patologia e Durabilidade das Estruturas de Concreto. Notas de aula (Especialização em Construção Civil). Universidade Federal de Minas Gerais, Escola de Engenharia, Belo Horizonte, 298 p

    Google Scholar 

  • Al-Amoudi OSB (2002) Attack on plain and blended cements exposed to aggressive sulfate environments. Cem Concr Compos 24:305–316

    Google Scholar 

  • Alexander M, Beushausen H (2019) Durability, service life prediction, and modelling for reinforced concrete structures—review and critique. Cem Concr Res 122:17–29

    Article  Google Scholar 

  • Altmann F, Sickrt JU, Mechtcherine V, Kaliske M (2012) A fuzzy-probabilistic durability concept for strain-hardening cement-based composites (SHCC) exposed to chlorides. Part 1: Concept development. Cem Concr Compos 34:754–762

    Google Scholar 

  • American Concrete Institute (2001) Committee 201.2R. Guide to durable concrete. ACI Manual of Concrete Practice. Detroit, 42 p

    Google Scholar 

  • Andrade MC, Diez JM, Cruz Alonso M (1997) Mathematical modeling of a concrete surface “Skin Effect” on diffusion in chloride contaminated media. Adv Cem Based Mater 6:39–44

    Article  Google Scholar 

  • Andrade C, Prieto M, Tanner P, Tavares F, D’andrea R (2013) Testing and modelling chloride penetration into concrete. Construct Build Mater 93:9–18

    Google Scholar 

  • Anoop MB, Rao KB, Rao TVSRA (2002) Application of fuzzy sets for estimating service life of reinforced concrete structural members in corrosive environments. Eng Struct

    Google Scholar 

  • Anoop MB, Raghuprasad BK (2012) A refined methodology for durability-based service life estimation of reinforced concrete structural elements considering fuzzy and random uncertainties. Comput Aided Civil Infrastruct Eng 27:170–186

    Article  Google Scholar 

  • Associação Brasileira de Normas Técnicas (2006) ABNT NBR 12655: Concreto de Cimento Portland – Preparo, Controle e Recebimento - Procedimento. Rio de Janeiro

    Google Scholar 

  • Bastidas-Arteaga E, Chateauneuf A, Sanchez-Silva M, Bressolette P, Schoefs F (2011) A comprehensive probabilistic model for chloride ingress in unsaturated concrete. Eng Struct 33:720–730

    Article  Google Scholar 

  • Bouteiller V, Marie-Victoire E, Cremona C (2016) Mathematical relation of steel thickness loss with time related to reinforced concrete contaminated by chlorides. Constr Build Mater 124:764–775

    Article  Google Scholar 

  • Campos A, López CM, Aguado A (2016) Diffusion–reaction model for the internal sulfate attack in concrete. Constr Build Mater 102:531–540

    Article  Google Scholar 

  • Castro-Borges P, Balancán-Zapata M, López-González A (2013) Analysis of tools to evaluate chloride threshold for corrosion onset of reinforced concrete in tropical marine environment of Yucatán, México. J Chem 1–8

    Google Scholar 

  • Cefis N, Comi C (2017) Chemo-mechanical modelling of the external sulfate attack in concrete. Cem Concr Res 93:57–70

    Article  Google Scholar 

  • Costa RM (2004) Análise de Propriedades Mecânicas do Concreto Deteriorado Pela Ação de Sulfato Mediante Utilização do UPV. Tese de Doutorado em Engenharia de Estruturas - Escola de Engenharia da Universidade Federal de Minas Gerais

    Google Scholar 

  • Drimalas T, Clement JC, Folliard KJ, Dhole R, Thomas MDA (2011) Technical Report 0-4889-1. Laboratory and Field Evaluations of External Sulfate Attack in Concrete. Center for Transportation Research, Austin, 190 p

    Google Scholar 

  • Félix EF et al (2018) Análise da vida útil de estruturas de concreto armado sob corrosão uniforme por meio de um modelo com RNA acoplado ao MEF. Revista de la Asociación Latinoamericana de Control de Calidad, Patología y Recuperación de la Construcción-ALCONPAT 8(1):1–15

    Google Scholar 

  • Feng P, Liu J, She W, Hong J (2018) A model investigation of the mechanisms of external sulfate attack on Portland cement binders. Constr Build Mater 175:629–642

    Article  Google Scholar 

  • FIB, Model code for service life design, Switzerland, fib bulletin 34, 2006

    Google Scholar 

  • Guzzo G (2018) Avaliação do comportamento do concreto convencional e do concreto de ultra alto desempenho frente à contaminação por cloretos. Trabalho de Conclusão de Curso, UTFPR, Curitiba

    Google Scholar 

  • Johnson SM (1969) Dégradation, entretien et reparation des ouvrages du genie civil, Eyrolles, 1a. edição, Paris

    Google Scholar 

  • Kropp J, Hilsdorf HK (1955) Performance criteria for concrete durability. Rilem Report 12, London

    Google Scholar 

  • Kuosa H, Ferreira RM, Holt E, Leivo M, Vesikari E (2013) Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life. Cem Concr Compos 47:32–40

    Article  Google Scholar 

  • Lee ST, Lee SH (2007) Sulfate attack and the role of cement compositions. J Korean Ceram Soc 44(9):465–470

    Google Scholar 

  • Liu Z, Deng D, De Schutter G, Yu Z (2013) The effect of MgSO4 on thaumasite formation. Cem Concr Compos 35:102–108

    Google Scholar 

  • Liang M, Lin S (2003) Modeling the transport f multiple corrosive chemicals in concrete structures: synergetic effect study. Cem Concr Res 33:1917–1924

    Article  Google Scholar 

  • Lorente S, Yssorche-Cubaynes MP, Auger J (2011) Sulfate transfer through concrete: migration and diffusion results. Cement Concr Compos 33:735–741

    Article  Google Scholar 

  • Martin-Pérez B, Zibara H, Hooton RD, Thomas MDA (2000) A study of the effect of chloride binding on service life prediction. Cem Concr Res 30:1215–1223

    Article  Google Scholar 

  • Mazer W (2010) Metodologia para a previsão da penetração de íons cloretos em estruturas de concreto armado utilizando a Lógica Difusa. Tese de doutorado, ITA, São José dos Campos, SP

    Google Scholar 

  • Mazer W, Lima MG, Medeiros-Junior RA (2017) Fuzzy logic for estimating chloride diffusion in concrete. Struct Build

    Google Scholar 

  • Mazer W, Araújo JM, Medeiros A, Weber AM (2019) Evaluation of sulfate ions in degrading armed concrete structures of a sewage treatment station: case study. J Build Pathol Rehabil

    Google Scholar 

  • Medeiros MHF, Andrade JJO, Helene P (2011) Durabilidade e vida útil das estruturas de concreto. Concreto: ciência e tecnologia 1:773–808

    Google Scholar 

  • Medeiros-Junior RA, Lima MG, Brito PC, Medeiros MHF (2015) Chloride penetration into concrete in an offshore platform—Analysis of exposure conditions. Ocean Eng 103:78–87

    Google Scholar 

  • Mehta K (1982) Durability of concrete in marine environment—a review. In: Performance of concrete in marine environment, ACI, pp 1–20

    Google Scholar 

  • Mehta PK, Monteiro JM (2008) Concreto: estrutura, propriedades e materiais. 2nd edn. IBRACON. São Paulo

    Google Scholar 

  • Mohammen TU, Hamada H (2003) Relationship between free chloride and total chloride contents in concrete. Cem Concr Res 33:1487–1490

    Article  Google Scholar 

  • Nogueira CG, Leonel ED (2013) Probabilistic models applied to safety assessment of reinforced concrete structures subject to chloride ingress. Eng Fail Anal 31:76–89

    Article  Google Scholar 

  • Otieno M, Beushausen H, Alexander M (2016) Chloride-induced corrosion of steel in cracked concrete—Part I: Experimental studies under accelerated and natural marine environments. Cem Concr Res 79:373–385

    Article  Google Scholar 

  • Petcherdchoo A (2013) Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete. Constr Build Mater 38:497–507

    Article  Google Scholar 

  • Piasta W, Marczewska J, Jaworska M (2014) Some aspects and mechanisms of sulfate attack. Struct Environ 6:19–24

    Google Scholar 

  • Pradelle S, Thiéry M, Baroghel-Bouny V (2017) Sensitivity analysis of chloride ingress models: case of concretes immersed in seawater. Constr Build Mater 136:44–56

    Article  Google Scholar 

  • Rheinheimer B, Khoe SS (2013) Ataque por Sulfatos em Estações de Tratamento de Efluentes. Trabalho de Conclusão de Curso (Graduação) – Curso Superior de Engenharia Civil. Universidade Federal do Paraná, Curitiba, Brasil

    Google Scholar 

  • Saetta A et al (1993) Analysis of chloride diffusion into partially saturated concrete. ACI Mater J 90(5):441–451

    Google Scholar 

  • Safehian M, Ramezanianpour AA (2013) Assessment of service life models for determination of chloride penetration into silica fume concrete in the severe marine environmental condition. Constr Build Mater 48:287–294

    Article  Google Scholar 

  • Schiavini DN (2018) Análise de diferentes tipos de cimento na resistência ao ataque por sulfatos. Trabalho de Conclusão de Curso, UTFPR, Curitiba

    Google Scholar 

  • Skalny J, Marchand J, Odler I (2002) Sulfate attack on concrete. Son Press 1ª Ed. London and New York

    Google Scholar 

  • Sun YM, Liang MT, Chang TP (2012) Time/depth dependent diffusion and chemical reaction model of chloride transportation in concrete. Appl Math Model 36:1114–1122

    Article  MathSciNet  Google Scholar 

  • Sun C, Chen J, Zhu J, Zang M, Ye J (2013) A new diffusion model of sulfate ions in concrete. Constr Build Mater 39:39–45

    Article  Google Scholar 

  • Val DV, Trapper PA (2008) Probabilistic evaluation of initiation time of chloride induced corrosion. Reliabil Eng Syst Saf 93:364–372

    Article  Google Scholar 

  • Valipour M, Shekarchi M, Ghods P (2014) Comparative studies of experimental and numerical techniques in measurement of corrosion rate and time-to-corrosion-initiation of rebar in concrete in marine environments. Cement Concr Compos 48:98–107

    Article  Google Scholar 

  • Zhu W, François R, Fang Q, Zhang D (2016) Influence of long-term chloride diffusion in concrete and the resulting corrosion of reinforcement on the serviceability of RC beams. Cement Concr Compos 71:144–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wellington Mazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazer, W., Weber, A.M., Brunhara, C.A., Fonseca, J.M. (2020). Salt Attack, Durability and Service Life of Concrete Structures. In: Delgado, J. (eds) Building Pathology, Durability and Service Life. Building Pathology and Rehabilitation, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-47302-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47302-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47301-3

  • Online ISBN: 978-3-030-47302-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics